Synthetic and Structure/Activity Studies on Acid-Substituted 2-Arylphenols: Discovery of 2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic Acid, a High-Affinity Leukotriene B_{4} Receptor Antagonist ${ }^{1}$

J. Scott Sawyer,* Nicholas J. Bach, S. Richard Baker, Ronald F. Baldwin, Peter S. Borromeo, Sandra L. Cockerham, Jerome H. Fleisch, Paul Floreancig, Larry L. Froelich, William T. Jackson, Philip Marder, Jayne A. Palkowitz, Carlos R. Roman, David L. Saussy, Jr.,' Elisabeth A. Schmittling, Steven A. Silbaugh, Stephen M. Spaethe, Peter W. Stengel, and Michael J. Sofia*

The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
Received June 12, 1995^{8}

Abstract

Structural derivatives of LY255283 have been studied as receptor antagonists of leukotriene B_{4}. Substitution of the 2 -hydroxya cetophenone subunit of 1 (LY255283) with a 2 -arylphenol group provided entry into several new series that feature various mono- and diacidic core functionality. These new analogues, the subject of a broad structure-activity investigation, displayed significantly increased in vitro and in vivo activity as receptor antagonists of LTB $_{4}$. A series of diaryl ether carboxylic acids demonstrated especially interesting activity and led to the discovery of compound 43b, 2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid (LY293111), a 2 -arylphenol-substituted diaryl ether carboxylic acid which displayed potent binding to human neutrophils ($\mathrm{IC}_{50}=17 \pm 4.6 \mathrm{nM}$) and guinea pig lung membranes ($\mathrm{IC}_{50}=6.6 \pm 0.71 \mathrm{nM}$), inhibition of LTB_{4}-induced expression of the CD11b/ CD18 receptor on human neutrophils ($\mathrm{IC}_{50}=3.3 \pm 0.81 \mathrm{nM}$), and inhibition of LTB_{4}-induced contraction of guinea pig lung parenchyma ($\mathrm{p} K_{\mathrm{B}}=8.7 \pm 0.16$). In vivo, $\mathbf{4 3} \mathbf{b}$ demonstrated potent activity in inhibiting LTB_{4}-induced airway obstruction in the guinea pig when dosed by the oral $\left(\mathrm{ED}_{50}=0.40 \mathrm{mg} / \mathrm{kg}\right)$ or intravenous $\left(\mathrm{ED}_{50}=0.014 \mathrm{mg} / \mathrm{kg}\right)$ routes. A specific LTB_{4} receptor antagonist, 43b had little effect on inhibiting contractions of guinea pig lung parenchyma induced by leukotriene $\mathrm{D}_{4}\left(\mathrm{LTD}_{4}\right)$, histamine, carbachol, or U46619. Compound 43 b has been chosen as a clinical candidate and is currently in phase I studies for a variety of inflammatory diseases.

The pharmacologic activity of leukotriene $\mathrm{B}_{4}\left(\mathrm{LTB}_{4}\right)$, a product derived from the action of 5 -lipoxygenase on arachidonic acid, continues to generate intense research interest. LTB $_{4}$ is known to stimulate degranulation, aggregation, chemotaxis, and chemokinesis of polymorphonuclear leukocytes, as well as promote superoxide generation. ${ }^{2}$ Such effects are known to be mediated through specific surface receptors associated with a number of inflammatory cells such as neutrophils ${ }^{3.4}$ and lymphocytes. ${ }^{5}$ Enhanced concentrations of LTB $_{4}$ have been observed in tissues of patients with several important diseases, including psoriasis, ${ }^{6}$ inflammatory bowel disease, ${ }^{\text {r }}$ rheumatoid arthritis, ${ }^{8}$ bronchial asthma, ${ }^{9}$ and adult respiratory distress syndrome (ARDS). ${ }^{10}$ Hence, it seems likely that a potent antagonist of this eicosanoid would be a promising antiinflammatory agent.
A number of potent LTB_{4} receptor antagonists (Chart $1)^{11}$ have appeared since the disclosure of first-generation compounds LY255283 (1), ${ }^{12}$ LY223982 (2), ${ }^{13}$ LY210073 (3), ${ }^{14}$ and SC-41930 (4). ${ }^{15}$ Compound 4 has evolved into SC-53228 (5), ${ }^{16}$ featuring N-methylamide as a replacement for the acetyl group, while entirely new classes of antagonists have emerged such as naphthalenebased RG $14893(6)^{17}$ and biphenylyl-substituted CP.

[^0]

Figure 1. SAR domains for compound 1.
105,696 (7). ${ }^{18}$ Compound CGS 25019C (8) remains an exception to the general trend of lipophilic acids through the utilization of an aromatic amidine group. ${ }^{19}$
The most recent installment of our program involved the further modification of compound $\mathbf{1}$ with the goal of fashioning a potent, orally active LTB_{4} receptor antagonist with clinical potential for the treatment of inflammation. An in vitro testing protocol was established to first evaluate both binding and functional activity of new compounds. Selected compounds exhibiting strong in vitro activity were then evaluated in vivo with a particular emphasis on oral dosing.
Compound 1 was divided into three regions (Figure 1). The western (lipophilic) region had already proven interesting due to the dissimilarity between the acetophenone substitution pattern of $\mathbf{1}$ compared to that of antagonist 4 and the more profound structural differences noted between 1 and $2 / 3$. The central (linker) region was believed to be essentially optimized based on the SAR previously conducted on compounds 1^{12} and $4 .{ }^{20}$
Finally, we viewed the eastern (acid) region as a critical focal point due in part to the known presence of

Chart 1

1

4

6

$2 X=H, H$
$3 X=O$

5

7

8
a secondary acid binding site first delineated by benzophenone antagonist 2.

Chemistry

We thought it desirable to develop a synthetic plan that would allow sufficient flexibility with regard to substitutions in all three of the critical domains outlined by our SAR strategy. Toward this end, 4-(benzyloxy)2 -hydroxyacetophenone (9) was chosen as a suitable synthon with potential for selective elaboration within each domain. Many of the final products were prepared as sodium salts, which greatly enhanced their solubility in dilute sodium bicarbonate solution, the vehicle of choice for the assays used.

Preparation of the 2 -arylphenol-substituted gemdimethyltetrazole series $\mathbf{1 5 a - k}$ began with appendage of the gem-dimethylnitrile side chain to $\mathbf{9}$ to provide compound 10 (Scheme 1). Full reduction of the keto group of 11 was accomplished using an acidic solution of triethylsilane in carbon tetrachloride. ${ }^{21}$ Selective bromination of 11 with N-bromosuccinimide proceeded rapidly to give compound 12 . While aryl-substituted intermediates $13 \mathbf{a}-\mathbf{g}, 13 \mathrm{i}$, and $\mathbf{1 3 k}, 1$ were synthesized using the appropriate boronic acids under Suzuki coupling conditions, ${ }^{22}$ compounds 13 h and 13 j were prepared via a palladium-catalyzed, zinc-mediated coupling using either 1-bromo-3-(trifluoromethyl)benzene or 2 -bromopyridine. ${ }^{23}$ Removal of the benzyl protecting group was accomplished by hydrogenolysis or, in the case of pyridine intermediate $\mathbf{1 3 j}$, boron tribromideassisted ether cleavage. Utilization of tetrazole-forming conditions on nitriles $14 \mathbf{a}-\mathbf{k}$ provided final products
$\mathbf{1 5 a}-\mathbf{k}$. The order of deprotection and tetrazole formation may be reversed, as is demonstrated for the synthesis of 3 -fluorophenyl analogue 17 (Scheme 2).

The general preparation of biphenylyl-substituted haloalkoxy intermediates $21 \mathbf{a}-\mathbf{d}$ and $\mathbf{2 2 a}, \mathbf{b}$, which were stockpiled and conjoined to various acid units, is illustrated in Scheme 3. Appendage of chloroalkyl side chains to 9 provided compounds $18 \mathbf{a}-\mathbf{c}$, which were then subjected to triethylsilane/trifluoroacetic acidmediated reduction to produce $19 \mathbf{a}-\mathbf{c}$, as described above. As with the gem-dimethyltetrazole series, bromination proved to be rapid and highly regiospecific. Bromides 20a-c, which were submitted to the Suzuki palladium-catalyzed cross-coupling reaction with either phenylboronic acid or (4-fluorophenyl)boronic acid, gave intermediates 21a-d with yields ranging from 77 to 87%. With the exception of small amounts of terminal olefin formation upon side chain alkylation, the haloalkoxy group remained intact through all of the transformations in Scheme 3. Compounds 21b, c were further converted to iodides 22a,b, which served as the key alkylation intermediates for a select group of acid units.

Preparation of the chromancarboxylic acid analogues $\mathbf{2 7 b}$ and $\mathbf{2 8 b}$ began with alkylation of known phenol $23^{15.20}$ with either aryl bromide 20a or the 4-fluorophe-nyl-substituted intermediate 22a Scheme 4). Suzuki coupling of 24 with either phenylboronic acid or (4fluorophenyl)boronic acid was then performed to provide compounds 25 and 26, respectively. Hydrogenolysis and ester hydrolysis of $\mathbf{2 5}$ and $\mathbf{2 6}$ provided the final chroman acids $\mathbf{2 7 b}$ and 28b.

Scheme 1"

(a) 6-Cyano-1-chloro-6-methylheptane, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{KI}, \mathrm{DMF}$; (b) $\mathrm{Et}_{3} \mathrm{SiH}$, trifluoroacetic acid, CCl_{4}; (c) NBS, CCl_{4}; di arylboronic acid, EtOH , benzene, aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, catalytic $\mathrm{Pd}^{2} \mathrm{PPh}_{3} \mathrm{l}_{4}$; (e) 1 , $t-\mathrm{BuLi}, \mathrm{THF}-78{ }^{\circ} \mathrm{C},(2) \mathrm{ZnCl}_{2},(3)$ aryl haide; (f) H_{2}, $\mathrm{Pd}(\mathrm{C}$), EtOAc; (g) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; 'h) NaN ;, diglyme, $\mathrm{Me}_{2} \mathrm{~N}_{1} \mathrm{CH}_{2}!_{2} \mathrm{OH} \cdot \mathrm{HCl}, 135^{\circ} \mathrm{C}$.

Scheme $\mathbf{2}^{\prime \prime}$

Construction of the xanthone analogues involved a concise strategy that we have previously reported. ${ }^{14,24}$ Differential alkylation of diester $29{ }^{14}$ with either 21a or 22a, followed by protecting group removal as described above, readily provided xanthone diacids $\mathbf{3 0 b}$
and 31b (Scheme 5). The xanthone monoester intermediate 34 was easily synthesized from commercially available 3 -hydroxy-9-0x0-9H-xanthene (32) by treatment with triethyl orthoacrylate and pivalic acid in refluxing toluene to give lactal 33, followed by acidcatalyzed ring opening (Scheme 6). ${ }^{25}$ Alkylation with fragment 21a or $\mathbf{2 1 b}$, followed by exhaustive protecting group removal, provided final products $\mathbf{3 5 b}$ and $\mathbf{3 6 b}$ in good yields.

The synthesis of the key diaryl ether acid antagonists is illustrated in Scheme 7. Generally, the sequence involved alkylation of 1,3-dimethoxybenzene (37) at the 2 -position (compounds $\mathbf{3 8 a}-\mathbf{d}$), pyridium hydrochloridepromoted demethylation (compounds $\mathbf{3 9 a}-\mathbf{d}$), and reaction of the resulting diols with the appropriate aryl

Scheme 3^{n}

[^1]Scheme $4{ }^{\text {f }}$

23

$$
c\left[\begin{array}{ll}
-24 & \mathrm{R}=\mathrm{Br} \\
\rightarrow 25 & \mathrm{R}=\mathrm{PH}
\end{array}\right.
$$

$26 \mathrm{R}=4 \cdot F \cdot \cdot \mathrm{Ph}$
d

" (a) (1) 20a, NaI, 2-butanone: (2, 23, NaH, 18-crown-6. DMF: (b) $22 \mathrm{a}, \mathrm{K}_{2} \mathrm{CO}_{1}, \mathrm{DMF}$; (c) phenylboronic acid. EtOH. benzene. aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(\mathrm{cat}\right.$.; ((d) $\mathrm{H}_{2}, 10 \%$ PdiCi. EtOAc: 'e aqueous NaOH , dioxane.
halide 40 using the Ullmann ether synthesis (compounds $41 \mathbf{a}-\mathbf{h}) .{ }^{14.26}$ Alkylation of the diaryl ether units with the appropriate 2 -arylphenol-substituted haloalkoxy fragments provided advanced intermediates 42a-l, which were then exhaustively deprotected to give the final carboxylic acid products $43 \mathbf{a}-1$. For compound 43 e , alkylation of diaryl ether 41c with bromophenoxysubstituted propyl chloride 20a produced 42e, which was subjected to Suzuki cross-coupling conditions with (4-fluorophenyl)boronic acid, followed by ester hydrolysis, to provide the final acid. Tetrazole 431 was secured by treatment of the nitrile intermediate 421 with
lithium azide and triethylammonium chloride in 2-meth oxyethanol.:"

Because of our particular interest in compound $\mathbf{4 3 b}$ (LY293111), we pursued an alternate route to diaryl ether ester 41a devoid of the low-yielding Ullmann ether procedure. Toward this end, we turned to recently published methodology expressly designed to allow smooth access to diaryl ethers similar to 41a. ${ }^{28}$ In the event, alumina-supported potassium fluoride-mediated coupling of phenol 44 cobtained in high yield by monodemethylation of $\mathbf{3 8} \mathbf{a}$ by sodium ethyl mercaptide) with 2 -fluorobenzonitrile gave diaryl ether 45 in 99% yield (Scheme 8). A further demethylation with boron tribromide, nitrile hydrolysis, and esterification provided intermediate $41 \mathbf{a}$ in good overall yield. The formation of intermediate $\mathbf{4 1 h}$, previously used in the synthesis of final tetrazole product 431. proved to be an added bonus with this sequence.

Modification of the diaryl ether oxygen of compound 43 b was confined ti analogues featuring carbonyl, methylene, sulfide, sulfoxide, and sulfone substitutions. Halogen \cdot metal exchange and acylation of compound 46 with phthalic anhydride produced carboxylic acid 47a, which was then refluxed in acidic methanol to provide $47 b$ (Scheme 91 . Thermal Claisen rearrangement of 47 b gave both regioisomers 48 and 49 in a 1:2.5 ratio, which were separated by flash chromatography. Alkylation of phenol 49 with iodide $22 a$, followed by hydrogenolysis and hydrolysis. provided the carbonyl analogue 50b. Alternatively. catalytic hydrogenation of 49 in the presence of strong acid provided intermediate 51 , which was then alkylated with chloride $\mathbf{2 1 b}$ to produce 52a. Exhaustive protecting group removal gave methylene analogue $\mathbf{5 2 b}$.

Scheme 5^{-}

Scheme 6^{*}

 aqueous NaOH . MeOH . THF

Scheme 7^{a}

41a $\quad R^{4}=1$-propyl, $R^{2}=$ COOMe,$Y^{4}=Y^{2}=H$
41b $\quad R^{4}=1$-propyl, $R^{2}=\mathrm{CH}_{2} \mathrm{COOMe}, Y^{4}=Y^{2}=H$
41c $R^{1}=1$-propyl. $R^{2}=$ COOMe, $Y^{4}=H . Y^{2}=F$
41d $R^{1}=1$-propyl, $R^{2}=C O O M e, Y^{7}=F, Y^{2}=H$
41e $R^{4}=1$-butyl, $R^{2}=$ COOMe, $Y^{4}=Y^{2}=H$
$41 f R^{1}=$ isobutyl, $R^{2}=$ COOMe,$Y^{1}=Y^{2}=H$
$41 \mathrm{~g} R^{\prime}=$ benzyl, $R^{2}=$ COOMe,$Y^{\prime}=Y^{2}=H$
41h $R^{4}=1$-propyl, $R^{2}=C N, Y^{4}=Y^{2}=H$

42a $\quad R^{i}=1$-propyl, $R^{2}=$ COOMe, $X=$ phenyl, $Y^{i}=Y^{2}=H, n=1$
43a $R^{1}=1$-propyl, $R^{2}=\mathrm{COOH}, X=Y^{4}=Y^{2}=H, n=1$
42b $\quad R^{1}=1$-propyl, $R^{2}=$ COOMe, $X=4-F-$ phenyl, $Y^{1}=Y^{2}=H, n=1$
42c $R^{1}=1$-propyl, $R^{2}=\mathrm{CH}_{2} \mathrm{COOMe}, X=4$-F-phenyl, $Y^{1}=Y^{2}=H, n=1$
43b $\quad R^{\prime}=1$-propyl, $R^{2}=C O O H, X=F, Y^{4}=Y^{2}=H, n=1$
43c $R^{1}=1$-propyl, $R^{2}=\mathrm{CH}_{2} \mathrm{COOH}, X=F, Y^{4}=Y^{2}=H, n=1$
43d $R^{1}=1$-propyl, $R^{2}=\mathrm{COOH}, X=Y=H, Y^{2}=F . n=1$
42d $R^{\prime}=1$-propyl, $R^{2}=$ COOMe, $X=$ phenyl, $Y=H, Y^{2}=F, n=1$
43e $R^{1}=1$-propyl, $R^{2}=\mathrm{COOH}, X=Y^{2}=F, Y^{4}=H, n=1$
$43 f \quad R^{1}=1$-propyl, $R^{2}=\mathrm{COOH}, X=Y^{1}=F, Y^{2}=H, n=1$
$43 \mathrm{~g} \quad R^{1}=1$-propyl, $R^{2}=\mathrm{COOH}, X=F, Y^{2}=Y^{2}=H . n=2$
$43 \mathrm{~h} \quad R^{1}=1$-propyl, $R^{2}=\mathrm{COOH}, X=F, Y^{4}=Y^{2}=H, n=3$
$431 \quad R^{1}=1$-butyl, $R^{2}=C O O H, X=F, Y^{4}=Y^{2}=H, n=1$
43j $R^{4}=$ isobutyl, $R^{2}=C O O H, X=F, Y^{4}=Y^{2}=H, n=1$
43k $\quad R^{1}=$ benzyl, $R^{2}=C O O H, X=F, Y^{4}=Y^{2}=H, n=1$
43| $\quad R^{1}=1$-propyl, $R^{2}=$ tetrazol-5-yl, $X=Y^{4}=Y^{2}=H . n=1$
a (a) n-BuLi, THF, then RI; (b) py- $\mathrm{HCl}, 180^{\circ} \mathrm{C}$; (c) $\mathrm{Cu}^{\circ}, \mathrm{K}_{2} \mathrm{CO}_{3}$, py; (d) $\mathrm{CuI}, t-\mathrm{BuOK}$, py; (e) $\mathrm{RX}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF; (f) RX, $\mathrm{K}_{2} \mathrm{CO}, \mathrm{KI}$, 2-butanone: (g) H_{2}, catalytic $10 \% \mathrm{Pd}$ (C), EtOAc; (h) aqueous $\mathrm{NaOH}, \mathrm{MeOH}, \mathrm{THF}$; (i) (4-fluorophenyl)boronic acid, EtOH, benzene, aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, catalytic $\left.\mathrm{Pd}_{1} \mathrm{PPh}_{3}\right)_{4} ;(\mathrm{j}) \mathrm{LiN}_{3}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{HCl}, 2$-methoxyethanol, then aqueous HCl .

Scheme $\mathbf{8}^{\text {a }}$

${ }^{\text {a }}$ (a) NaSEt , DMF; (b) 2-fluorobenzonitrile, $\mathrm{KF}-\mathrm{Al}_{2} \mathrm{O}_{3}, 18$-crown-6(cat.), $\mathrm{CH}_{3} \mathrm{CN}$; (c) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) 5 N NaOH . reflux; (e) concentrated $\mathrm{HCl}, \mathrm{MeOH}$, reflux.

Returning to bromide 46, two halogen-exchange/ electrophilic addition sequences followed by esterfication provided methyl ester 53b (Scheme 10). Claisen rearrangement of $\mathbf{5 3 b}$ also produced a mixture of regioisomers 54 and 55 ($1: 1.5$ ratio), separable by flash chromatography. Alkylation of major isomer 55 with chloride 21b smoothly gave ester 56a. Not unexpectedly, hydrogenation of sulfur-substituted 56a failed to remove the benzyl group, although the propenyl side chain was effectively reduced. Conversion of $\mathbf{5 6 a}$ to $\mathbf{5 6 b}$ was eventually accomplished by hydrogenation followed by treatment of the resulting propyl-substituted intermediate at low temperature with boron tribromide. Ester hydrolysis provided analogue $\mathbf{5 6 c}$, which was sequentially oxidized to sulfone 56 e through sulfoxide $\mathbf{5 6 d}$ with m-chloroperoxybenzoic acid.

Synthesis of the 3 -phenylpropanoic acid-substituted structures utilized phenols $58-60$ as a starting point (Scheme 11). Alkylation of esters 58 (prepared as
described above for the synthesis of xanthone intermediate 34) and 59 with chloride 21b led to compounds 61a and 62 a, respectively, which were then subjected to base hydrolysis and hydrogenolysis to give final products 61c and 62c. Alkylation of nitrile $\mathbf{6 0}$ with 21b gave 63a, which was converted to the corresponding tetrazole 63b with sodium azide/triethylammonium chloride in DMF. Hydrogenolysis provided final product 63 c .
Non-xanthanoid compounds containing two acidic chains, or one acidic and one nonacidic polar chain, were obtained in a similar manner (Scheme 12). Monoalky lation of resorcinol provided nitrile $\mathbf{6 5}$ and ester 66a, which was further transformed to amide 66b. These were converted under standard conditions to propanoic esters $\mathbf{6 7}-\mathbf{6 9}$. Alkylation with chloride $\mathbf{2 1 b}$ led to esters 70a, 71a, and 72a. Installation of the tetrazole group onto compound 70a with the sodium azide method produced 70b, which was subsequently hydrolyzed to

Scheme ${ }^{-1}$

Scheme $\mathbf{1 0}^{\circ}$

 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-i 8{ }^{\circ} \mathrm{C} ;(\mathrm{j}) 85$ \% $\mathrm{MCPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2},{ }^{\circ}{ }^{\circ} \mathrm{C}$.
provide tetrazole/carboxylic acid 70c. Base hydrolysis was also used to convert 71a to 71b, and 72a to 72b. Compounds 70c, 71b, and 72b were then progressed to the free phenols ($\mathbf{7 3}-\mathbf{7 5}$) by hydrogenolysis.

Biological Evaluation

Several assays were used to evaluate in vitro and in vivo activity of compounds. The ability of the compounds to bind at the LTB_{4} receptor was assessed by measuring inhibition of binding of $\left[{ }^{3} \mathrm{H}\right] \mathrm{LTB}_{4}$ to isolated human neutrophils ${ }^{29}$ and guinea pig lung membranes. ${ }^{36}$ Two functional assays were used to evaluate the antagonist activity: inhibition of LTB_{4}-induced expression of human neutrophil integrin CD11b/CD18 ${ }^{31}$ and inhibition of LTB_{4}-induced contraction of guinea pig lung parenchyma. ${ }^{30}$ Since LTB_{4} is known to induce bron-
choconstriction in the guinea pig via a receptor-mediated mechanism, ${ }^{32}$ select compounds were evaluated for their ability to inhibit LTB_{4}-induced airway responses when administered by the intravenous, oral, or aerosol routes, using excised-lung gas volume (ELGV) as a measure of the degree of airway obstruction. ${ }^{33}$

Structure-Activity Relationships

gem-Dimethyltetrazoles and Chromancarboxy-
lic Acids. In our refinement of compound 1 we initially examined the western region with emphasis on replacements for the acetyl group. In the original series, the acetyl group of an analogue of $\mathbf{1}$ was substituted with other ketones such as propionyl and benzoyl. ${ }^{12}$ Although a loss of activity was observed with ketones other than acetyl, the initial analogues examined did

Scheme $11^{\text {a }}$

$$
\begin{aligned}
& \mathrm{a}, \mathrm{~b} \square 57 \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OMe} \\
& 58 \mathrm{R}^{1} \\
& 59=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOEt}, \mathrm{R}^{2}=\mathrm{OMe} \\
& 59 \mathrm{R}^{1} \\
&\left.60 \mathrm{CH}_{2}\right)_{2} \mathrm{COOMe}, \mathrm{R}^{2}=\mathrm{H} \\
&=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CN}, \mathrm{R}^{2}=\mathrm{H}
\end{aligned}
$$

$$
\begin{aligned}
& d \square 61 \mathrm{a} R^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{COOEt}, \mathrm{R}^{3}=\mathrm{OMe} \\
& \mathrm{~d} \square 61 \mathrm{~b} R^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{COOH}, \mathrm{R}^{3}=\mathrm{OMe} \\
& \mathrm{e} \square 61 \mathrm{c} \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{COOH}, \mathrm{R}^{3}=\mathrm{OMe} \\
& \mathrm{~d} \square 62 \mathrm{a} R^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{COOMe}, \mathrm{R}^{3}=\mathrm{H} \\
& \mathrm{e} \square 62 \mathrm{~b} R^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{COOH}, \mathrm{R}^{3}=\mathrm{H} \\
& \square 62 \mathrm{c} R^{1}=\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{COOH} \\
& \mathrm{f} \square 63 \mathrm{a} R^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{CN}, \mathrm{R}^{3}=\mathrm{H} \\
& \mathrm{e} \square 63 \mathrm{~b} R^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\text { tetrazol }-5-\mathrm{y}, \mathrm{R}^{3}=\mathrm{H} \\
& \square 63 \mathrm{c} R^{1}=\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{2}=\text { tetrazol-5-yl }
\end{aligned}
$$

" (a) $\mathrm{CH}_{2}=\mathrm{CHC}(\mathrm{OEt})_{3}$, pivalic acid, toluene; (b) dilute $\mathrm{HCl}, \mathrm{THF}$; (c) $\mathbf{2 1 b}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{KI}, \mathrm{DMF}$; (d) aqueous NaOH , MeOH, THF; (e) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}(\mathrm{C}), E t O \mathrm{Ac}^{2}$ (f) $\mathrm{Bu}_{3} \mathrm{SnN}_{3}, 95^{\circ} \mathrm{C}$.
not contain an acidic group in the eastern region, now known to be critical for maximum receptor affinity. Compounds in which the acetyl group of 1 was directly replaced with alkoxy (particularly ethyloxy-substituted example 1a) ${ }^{34}$ or alkyl (particularly propyl-substituted

Table 1. Western Variations

compd	Y	$K_{\text {i }}, \mathrm{nM}$		human neutrophil CD11b/CD18 up-regulation. $\mathrm{IC}_{50}, \mathrm{nM}$
		human neutrophil	guinea pig lung membranes	
1	$\mathrm{CH}_{3} \mathrm{CO}$	85 ± 7.9	78 ± 10	2900 ± 470
1 a	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$	8.4	14 ± 2.9	210
1 b	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2}$	9.3	14 ± 6.3	160
1 c	3-pyrazole	4.2 ± 0.30	42 ± 8.8	ND ${ }^{\text {a }}$
15a	Ph	3.0	4.4 ± 1.0	32 ± 3.4

${ }^{a}$ ND $=$ not determined.
example $\mathbf{1 b})^{35}$ were later shown to be much more potent antagonists, as was the $1 H$-pyrazol-3-yl derivative $1 \mathbf{c}^{36}$ (Table 1). Unfortunately, compounds 1a-c exhibited disappointing oral activity similar to our findings with compound 1.
While the 2 -position on the phenol ring appeared to be intolerant of long hydrocarbon chains, we believed it was possible that a shorter lipophilic group such as phenyl could effectively fill the acetyl binding cleft. Compound 15a proved that this was indeed the case and led to a new western variation that was subsequently shown to have much greater in vitro and in vivo activity. ${ }^{37}$ We were especially encouraged by the increase in capacity to inhibit LTB_{4}-induced up-regulation of CD11b/CD18 receptor expression displayed by $\mathbf{1 5 a}$, a 90 -fold improvement over compound 1. Overall, this result suggests the existence of a lipophilic binding cleft within the LTB_{4} receptor that exhibits a preference for relatively planar groups.

Scheme 12^{α}

a (a) $\mathrm{RlCH}_{2}{ }_{4} \mathrm{Br}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$; (b) $\mathrm{Me}_{2} \mathrm{NH}, \mathrm{H}_{2} \mathrm{O}$; (c) $\mathrm{CH}_{2}=\mathrm{CHC}\left(\mathrm{OEt}_{3}\right.$, pivalic acid, toluene; (d) dilute HCl , THF; (e) 21b, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{KI}$. DMF; (f) $\mathrm{NaN}_{3}, \mathrm{E}_{3} \mathrm{~N}-\mathrm{HCl}, \mathrm{DMF} ;(\mathrm{g})$ aqueous $\mathrm{NaOH}, \mathrm{MeOH}, \mathrm{THF}$; (h) H_{2}, catalytic $10 \% \mathrm{Pd}(\mathrm{C}$), EtOAc.

Table 2. gem-Dinethyltetrazoles"

compd	X	Y	K_{l}, nM		human neutrophil CD11b CD18 up-regulation, $1 \mathrm{C}, \mathrm{nM}$
			human neutrophil	guinea pig lung membranes	
15a	CH	H	3.0	4.5 ± 1.0	$32=3.4$
15 b	(H	4-Me	4.0	37 ± 6.6	ND
15 c	(H	3-Me	8.0	72 ± 17	\cdots
15 d	(H	$2 . \mathrm{Mc}$	11	$\bigcirc 0 \pm 14$	SD
15 e	(H)	$4 . \mathrm{MeO}$	2.9	55 ± 12	ND
15 f	(H	3. Me ${ }^{\text {(}}$	4.0	21 ± 5.6	ND
15 g	(H	+-NMe.	16	86 ± 28	ND
1.5 h	(H	3-CF:	33	$7 \mathrm{i}=2.0$	ND
15 i	(H	H-C. 1	5.0	$25=8.8$	12
15j	\cdots	H	453	$200=39$	ND
15k	CH	$4-\mathrm{F}$	2.8	$3 . i=1.0$	$13=0.39$
17	(H	$3 \cdot \mathrm{~F}$	3.0	$6.2=1.9$	17

$* D=$ not determined
Table 3. Eastern Variations: Chromancarboxylic Acids

compd	X	$K_{\text {j, }}$ n.V		human neutrophil CD11b;CD18 up-regulation. $\mathrm{IC}_{56}, \mathrm{nM}$
		human neutrophil	```guinea pig lung membranes```	
27 b	H	3.3	2.8 ± 0.82	$110=10$
28b	F	3.8	4.4 ± 2.1	17 ± 1.3

Substitution of the phenyl ring of 15a with a series of electron-donating and -withdrawing functional groups (Table 2) revealed that the binding cleft possesses a certain tolerance to a variety of electronic pertubations ian exception is pyridine analogue $\mathbf{1 5 j}$, where our attempt to access an additional binding point through the introduction of a heteroatom was unsuccessful). The first indication of LTB_{4} receptor heterogeneity came in the course of comparing binding constants for the human neutrophil against that of guinea pig lung membranes. With the exception of the 3 - and 4 -fluoro-
substituted analogues, binding to the guinea pig receptor averaged 16 -fold less potent than the unsubstituted phenyl compound 15a. The heterogeneity of the LTB $_{4}$ receptor has been speculated upon previously. ${ }^{38}$ Evaluation of $\mathbf{1 5 a}, 15 \mathrm{k}$, and $\mathbf{1 7}$ (each known to possess high affinity for the guinea pig receptor) in the parenchyma contraction assay demonstrated a significant increase in inhibitory activity relative to compound 1 (Table 8).

We have previously demonstrated that replacement of the gem-dimethyltetrazole group of compound 1 with the propyloxy-substituted chromancarboxylic acid unit found in compound 4 results in a hybrid with no loss of in vitro activity, and an increase in oral activity. ${ }^{39}$ This chroman acid group has also been successfully incorporated into alkoxy analogues of compound 1 with similar results. ${ }^{4 / 1}$ Our results with the 2 -arylphenol series were consistent with these observations, as compounds $\mathbf{2 7 b}$ and $\mathbf{2 8 b}$ (Table 3) displayed an in vitro activity profile very similar to their gem-dimethyltetrazole counterparts (i.e., 15a and 15k). Compound 27b also possessed excellent oral activity (vide infra).
Xanthonecarboxylic Acids. As our remaining focus centered largely on modification of the eastern region of compound 1 , we contemplated a merger of the 2-arylphenol unit with the xanthonedicarboxylic acid moiety first revealed in $3 .{ }^{14}$ Our earlier work readily illustrates the structural hybridization possible between the series of antagonists represented by $\mathbf{1}$ and $\mathbf{3}$ to produce the new antagonist LY282210 (1d, Table 4).; Beyond the general conclusion that two important series of structurally distinct LTB_{4} antagonists could be merged, we also demonstrated that deletion of the propanoic acid side chain led to a significant loss of binding affinity. Substitution of the acetyl group of 1d with phenyl provided a new, highly potent variation on the xanthone class of antagonists (Table 4). ${ }^{4}$ Compound $\mathbf{3 0 b}$, where phenyl is directly substituted for the acetyl moiety, exhibited a 7 -fold increase in binding affinity for human neutrophils relative to $1 \mathbf{d}$, while an 11 -fold increase was observed for guinea pig lung membranes. These results parallel the increase in activity displayed by gem-dimethyltetrazole 15a over 1 and clearly highlight the superior nature of the phenyl group in interaction with a critical pharmacophore of the LTB_{4} receptor. This is especially apparent when comparing $\mathbf{1 d}$ with the aryl-substituted xanthones in their ability to inhibit LTB_{4}-induced integrin up-regulation.

Table 4. Eastern Variations: Xanthones

compd	R^{1}	R ${ }^{2}$	$K_{\text {, }}, \mathrm{n}, \mathrm{M}$		human neutrophil CD11b/CD18 up-regulation, IC_{5}, nM
			human neutrophil	guinea pig lung membranes	
1 d	acetyl	COOH	$4.0{ }^{11}$	1.2 ± 0.11^{11}	47^{24}
30b	Ph	COOH	0.51	0.11 ± 0.047	3.4 ± 0.29
31b	4-F-Ph	COOH	9) 47	$0.040=0.016$	$1.2=0.10$
35b	Ph	H	22	12 ± 24	5.4 ± 0.10
36b	4.F.Ph	H	36	4.0 ± 1.2	1.8 ± 0.040
1.TP			1.9 ± 0.050	0.12 ± 0.015	

Table 5. Eastern Variations: Diaryl Ether Acids

		*							
							$K_{\mathrm{i}}, \mathrm{nM}$		human neutrophil CD11biCD18 up-regulation, $\mathrm{IC}_{54}, \mathrm{nM}$
compd	R^{1}	R ${ }^{2}$	X	Y^{1}	Y	n	human neutrophil	guinea pig lung membranes	
43 a	1-propyl	COOH	H	H	H	1	19	16 ± 5.1	11
43b	1.propyl	COOH	F	H	H	1	17 ± 4.6	$6.6 \pm 0 . \overline{1}$	3.3 ± 0.81
43 c	1-propyl	$\mathrm{CH}_{2} \mathrm{COOH}$	F	H	H	1	210	8.4 ± 1.3	7.8
43 d	1-propyl	COOH	H	H	F	1	10	14 ± 2.4	3.2
43 e	1-propyl	COOH	F	H	F	1	4.4	9.5 ± 3.0	2.5
43 f	1-propyl	COOH	F	F	H	1	48	19 ± 6.1	2.7
43 g	1-propyl	COOH	F	H	H	2	39	19 ± 4.5	5.1
43h	1-propyl	COOH	F	H	H	3	150	6.8 ± 1.5	9.5
43 i	1-butyl	COOH	F	H	H	1	34	16 ± 2.3	14
43 j	isobutyl	COOH	F	H	H	1	36	14 ± 2.4	8.5
43 k	benzyl	COOH	F	H	H	1	390	55 ± 9.0	220
431	1-propyl	tet*	H	H	H	1	45	13 ± 2.5	ND'
4							12	15 ± 3.0	2300 ± 220

"tet $=1 H$-tetrazol-5-yl. " ND = not determined.

As previously disclosed, the propanoic acid group of the earlier xanthone series is critical for potent receptor binding to both human and guinea pig receptors, as deletion of this side chain in $\mathbf{1 d}$ resulted in weak binding. ${ }^{41}$ To ascertain the importance of the aromatic carboxyl group, monoacid $\mathbf{3 5 b}$ was synthesized. Interestingly, while $40-100$-fold less potent at binding to human neutrophils and guinea pig lung membranes than its diacid analogue $\mathbf{3 0 b}, \mathbf{3 5 b}$ still retained potent antagonism against LTB_{4}-induced CD11b/CD18 upregulation and was particularly effective in the guinea pig lung parenchyma contraction assay (Table 8). Binding to human neutrophils correlated well with the structure-activity relationship observed for the benzophenone (2) class ${ }^{42}$ of LTB_{4} receptor antagonists.

Compound 31b, the 4 -fluoro analogue of $\mathbf{3 0 b}$, displayed somewhat higher activity in vitro, with the most significant gain observed in blocking up-regulation of the CD11b/CD18 receptor. Compound $31 b$ appears overall to be the most potent in vitro LTB_{4} receptor antagonist yet described. It was especially tenacious in binding to both human neutrophils ($K_{\mathrm{i}}=0.47 \mathrm{nM}$) and guinea pig lung membranes ($K_{\mathrm{i}}=0.040 \mathrm{nM}$), a $2-4$ fold increase over that of the natural agonist. Additionally, removal of the aromatic carboxylic acid (compound $\mathbf{3 6 b}$) led to an $80-100$-fold loss of human neutrophil and guinea pig lung membrane binding affinity relative to 31b. However, as found with the nonfluoro analogues $\mathbf{3 0 b}$ and $\mathbf{3 5 b}$, functional activity toward the CD11b/ CD18 receptor was not significantly affected. We have commented extensively on the relationship between the secondary acid group and the known heterogeneity of the human neutrophil LTB_{4} receptor. ${ }^{41}$ In the present series, the secondary aromatic carboxylic acid of compounds $\mathbf{3 0 b}$ and $\mathbf{3 1 b}$ appears to be necessary only for tight receptor binding to the human neutrophil. The nature of the secondary acid binding site of the LTB_{4} receptor, which has proven to be especially accommodating to the xanthone nucleus, has been further elucidated by the study of three spatial analogues of compound 31b. ${ }^{43}$

Diaryl Ether Acids. In our search for novel modifications of the eastern portion of 1 , we decided to
further examine the acid fragment of 4 , which is comprised of a constrained scaffolding in which the carboxyl group is directed out-of-plane relative to a chroman aromatic ring substituted with a secondary lipophilic group. We reasoned that an acid-substituted moiety similar to the chroman unit of $\mathbf{4}$, preferably devoid of chiral centers, might allow sufficient flexibility to enhance receptor binding. Implementation of this plan led to the development of a derivative of $\mathbf{1}$ containing the novel 2-propylphenoxybenzoic acid unit in place of the gem-dimethyltetrazole group. ${ }^{26}$ Molecular modeling suggested that such a diaryl ether manifold would place the critical carboxylic acid in a spatial position similar to that observed for 4. Development of the 2-aryl-substituted series began with the preparation of $43 \mathbf{a}$ (Table 5). Contrary to many of the gem-dimethyltetrazole analogues listed in Table 2, compound 43a possessed potent binding activity with little discrimination between human and guinea pig receptors, similar to $15 \mathbf{a}, 15 \mathbf{k}$, and 17 . Compound 43 b , the 4 -fluoro derivative, also exhibited excellent binding activity and in addition was similar to the xanthone antagonists (Table 4) in strongly inhibiting expression of the CD11b/ CD18 receptor. ${ }^{31 \mathrm{~b}}$ The structural novelty and potent activity of compound $\mathbf{4 3 b}$, which contains additional lipophilicity about the acid functionality relative to the gem-dimethyltetrazoles or the primary xanthone acid binding chain, encouraged us to further investigate this unique series.
Variation of the diaryl ether acid series involved modification at four key positions: the acid group, the lipophilic appendage, the central spacer region, and the diaryl linker atom. Insertion of a methylene group between the carboxylic acid and the phenyl ring (compound 43 c) resulted in a substantial decrease in binding for the human neutrophil receptor, but did not affect CD11b/CD18 up-regulation. Interestingly, 4 was found to be far more potent at binding to the human and guinea pig LTB_{4} receptor than at inhibiting the LTB_{4} induced expression of CD11b/CD18 (Table 5). Boosting acidity of the benzoic acid group by introduction of fluorine atoms failed to improve receptor activity (compounds 43d-f), while a three-carbon central linker

Table 6. Diaryl Linker Variations

compd	X	$K_{\text {i }}, \mathrm{n}$ M			human neutrophil CD11b.CD1, up-regulation.$1 C_{n}, n, n$
		human neutrophil	guinea pig lung membranes	guinea pig spleen cells	
43b	\bigcirc	$17 \div 4.6$	6.6 ± 0.71	17	$3.3=1.81$
50 b	CO	35	$11=3.1$	33	1.3
52 b	CH_{2}	99	11 ± 2.1	25	- -6
56c	s	3.0	11 ± 0.87	42	-. 4
56d	SO	14	1.4	5.9	9.5
56e	SO_{2}	15	11	36	160

group was preferred over longer spacings (compare $\mathbf{4 3 b}$ to $\mathbf{4 3 g}$ and $\mathbf{4 3 h}$) for neutrophil binding. In addition, replacement of the carboxylic acid with a tetrazole group (compound 431) also failed to increase receptor binding. Our original work in the acetophenone series demonstrated the importance of accessing the lipophilic binding pocket adjacent to the benzoic acid. ${ }^{26}$ This pocket was shown to accommodate smaller groups such as 1-butyl and isobutyl (compounds $43 i$ and $43 j$), but was less receptive to benzyl (compound 43k). Several of these diaryl ether antagonists had good inhibitory activity on guinea pig lung parenchyma (Table 8), in particular compounds $43 a$ and $43 b$. The selectivity of compound 43b was also assessed on guinea pig lung parenchyma. For example, the compound had no effect on contractions of guinea pig lung parenchyma induced by leukotriene $\mathrm{D}_{4}\left(\mathrm{LTD}_{4}\right)$, histamine, carbachol, or the thromboxane mimetic U46619.

Diaryl Linker Variations. Some of the most interesting results with this series were obtained by varying the connecting functionality between the two rings of the eastern region. The tendency to favor inhibition of expression of human neutrophil CD11b/ CD18 over simple receptor binding, displayed by compounds such as 43 c and 43 h , was again apparent in the carbonyl derivative $\mathbf{5 0 b}$ and to a greater extent with methylene analogue 52b and sulfur analogue 56c (Table 6). Alternatively, oxidation to the sulfoxide (56d or sulfone (56e) inverted the relative activities in favor of
receptor binding. Any speculation as to the reason for the activity profile displayed by these diaryl linker analogues would be inadequate without consideration of the possible existence of two or more receptor subtypes (or different states of the same receptor) on the human neutrophil. Thisireinforces the concept that specific LTB_{4} receptor subtypes or substates exist for the different cell functions activated by LTB_{4}, such as chemotaxis and degranulation. 3×4 !

Phenylpropanoic Acids. A further examination of the xanthone nucleus found in compounds $\mathbf{3 0 b}$ and $\mathbf{3 1 b}$ prompted us to consider eastern acid variations built around the phenylpropanoic acid group. Monoacids with a completely excised xanthone ring such as 61c and 62c retained tight binding to both human neutrophil and guinea pig lung membrane receptors, with some loss of activity at inhibiting up-regulation of the CD11b/CD18 receptor (Table 7). Replacement of the methoxy group of $61 \mathbf{c}$ with an oxyvaleric acid side chain regained much of the activity lost by elimination of the xanthone. The secondary carboxylic acid of $\mathbf{7 4}$, while not as rigidly positioned as in xanthone $\mathbf{3 1 b}$, nonetheless provides a highly potent antagonist. This valeric acid-substituted phenylpropanoic acid fragment has been reported previously in connection with the development of ONO-4057, an antagonist related to $2 .{ }^{44}$ Tetrazole substituents at either the primary site (compound 63 c) or secondary site (compound 73) resulted in similar activity relative to the corresponding carboxylic acids. Amide $\mathbf{7 5}$ displayed excellent binding activity on both human neutrophils and guinea pig lung membranes consistent with the known propensity for the secondary site to accept nonacidic polar groups. The activity of $\mathbf{7 5}$ on up-regulation of the CD11b/CD18 receptor was similar to that observed for the xanthone series.

In Vivo Activity. Selected antagonists were evaluated in vivo by way of either intravenous, oral, or aerosol administration. Our primary model consisted of evaluation of the compounds as inhibitors of LTB_{4}-induced airway obstruction in the guinea pig. Several compounds :Table 9) were active in vivo with ED_{50} values of less than $1 \mathrm{mg} / \mathrm{kg}$ (oral) and $0.1 \mathrm{mg} / \mathrm{kg}$ (intravenous). In particular, compound 43 b proved to be superior to 4 when dosed by both oral i 13-fold more potent) and intravenous (25 -fold more potent) routes with ED_{50} 's of 0.40 and $0.014 \mathrm{mg} / \mathrm{kg}$. respectively. Furthermore, a

Table 7. Eastern Variations: Phenylpropanoic Acids

q°

compd	R^{1}	R^{2}	K_{1}. M . 1		human neutrophil CD11b:CD18 up-regulation, $\mathrm{IC}_{\text {ju }}, \mathrm{nM}$
			human neutrophil	guinea pig lung membranes	
61 c	COOH	O.He	8.3	$6.4=10.93$	64
62c	COOH	H	8.0	38 ± 0.93	31
63 c	tet ${ }^{\text {a }}$	H	15	$15: 2.9$	$\cdots{ }^{\prime}$
73	COOH	(CH_{2} \% tet ${ }^{\text {a }}$	2.3	$1.1: 0.18$	ND'
74	COOH	, CH	2.3	103: 18.17	13.
75	COOH	($\left.\mathrm{CH}_{2}\right)_{4} \mathrm{CONMe}{ }_{2}$	3.1	(f) : 1.4	7.8

[^2]Table 8. Inhibition of LTB_{4}-Induced Contraction of Guinea Pig Lung Parenchyma

| | guinea pig lung
 parenchyma
 compd | contraction, $\mathrm{p} K_{\mathrm{B}}(n)$ | compd |
| :---: | :---: | :---: | :---: | | guinea pig lung |
| :---: |
| parenchyma |
| contraction, $\mathrm{p} K_{\mathrm{B}}(n)$ |

Table 9. Inhibition of LTB_{4}-Induced Airway Obstruction in the Guinea Pig

	inhibition of increase in ELGV, $\mathrm{ED}_{50}(\mathrm{mg} / \mathrm{kg}$	
compd	iv	po
4	0.36	5.2
$\mathbf{1 5 a}$	0.05	0.7
$\mathbf{1 5 k}$	0.05	0.3
$\mathbf{1 7}$	0.03	0.6
$\mathbf{2 7 b}$	0.01	0.5
$43 \mathbf{a}$	0.008	0.4
$\mathbf{4 3 b}$	0.01	0.4

duration of action study in the guinea pig indicated that compound 43 b at a dose of $1.0 \mathrm{mg} / \mathrm{kg}$ orally caused a prolonged inhibition of LTB_{4}-induced airway obstruction with a pharmacologic $t_{1 / 2}$ of greater than 8 h .

Dosing of diacid antagonists via either intravenous or oral routes invariably resulted in poor inhibition of LTB $_{4}$-induced responses. Diacids such as xanthone $\mathbf{3 1 b}$ appear to be cleared from the blood rapidly, a phenomenon that has been noted with other moderately high molecular weight diacid leukotriene antagonists. ${ }^{45}$ However, when compounds $\mathbf{3 0 b}$ and $\mathbf{3 1 b}$ were administered by the aerosol route at an estimated inhaled dose of 10.0 $\mu \mathrm{g} / \mathrm{kg}$, followed by LTB_{4} inhalation challenge, ELGV values were reduced by $69 \pm 20 \%$ and $81 \pm 8 \%$, respectively. The $10.0 \mu \mathrm{~g} / \mathrm{kg}$ dose is well within the delivery range of current metered dose or dry powder inhalers. This suggests the potential for topical application of these highly potent diacid agents in inflammatory lung diseases such as asthma.

Conclusions

Since our earlier observation that the binding functionality of antagonists represented by 1 may be merged with that of 3 or 4 accompanied by an overall gain in activity, it has become increasingly apparent that the LTB_{4} receptor is a very complex entity. While it has been previously established that the hydroxyl and ethyl groups of 1 are critical for potent activity, ${ }^{12}$ development of compounds containing the 2 -arylphenol substituent has further refined our model of the LTB_{4} receptor to reflect the preference of the primary lipophilic cleft for planar groups. On the basis of the examination of many diverse series of antagonist structures, this pocket clearly possesses a high degree of discrimination beyond that of a simple large hole into which any lipophilic group will bind. More importantly, the 2 -arylphenol modification has contributed significantly in the realm of oral bioavailability.

A clearer picture is beginning to emerge with respect to the acid binding sites of the receptor. While a typical LTB_{4} antagonist normally requires only one acid group for interaction at the primary acid-binding domain, compounds which can also access the secondary site,
such as $\mathbf{3 1 b}$ and $\mathbf{7 4}$, tend to display overall the most potent in vitro activity. However, when oral activity is the defining criteria for selection of a clinical candidate, monoacids still remain the best choice. Interestingly, the above observations concerning the lipophilic binding cleft and mono-versus diacid functionality are also applicable to the $\mathrm{LTD}_{4} / \mathrm{LTE}_{4}$ receptor. As with LTB_{4} receptor antagonists, the incorporation of lipophilic bulk in close proximity to a single acid group (e.g. the methyl groups of 1 or the n-propyl group of 43 b) has also been exploited in the design of potent $\mathrm{LTD}_{4} / \mathrm{LTE}_{4}$ receptor antagonists. ${ }^{46}$ In contrast, while our understanding of the molecular shape criteria required to design a potent $\mathrm{LTD}_{4} / \mathrm{LTE}_{4}$ receptor antagonist is fairly well established, it is apparent that our knowledge concerning the spatial demands of the LTB_{4} receptor is still in its infancy. Other obvious inconsistencies in the comparison of these two receptors, such as the potent LTB_{4} receptor antagonist activity of arylamidine-substituted compound 8, will have to be accounted for in any comprehensive leukotriene receptor model.

Of the several 2 -arylphenol-substituted series discussed above, the diaryl ether acids have proven especially interesting in vivo, with potent oral activity observed in the guinea pig at doses of less than $1.0 \mathrm{mg} /$ kg. While the ability of these compounds to inhibit human neutrophil binding was somewhat variable for most of this series, their capacity to inhibit an LTB_{4} induced function on human cells such as up-regulation of the CD11b/CD18 adhesion protein was consistently high. The exceptions to this trend (e.g. compound $\mathbf{4 3 k}$) imply the existence of receptor subtypes or substates in human neutrophils. The diaryl ether class also provides an excellent foundation for further structural modification, including the addition of a secondary acid chain. Compound 43 b , which has been chosen as a clinical candidate, has demonstrated pharmacologic activity in humans ${ }^{4 i}$ and is currently in phase I studies for a variety of inflammatory diseases. ${ }^{11 \Omega}$

Experimental Section

Melting points were determined on a Thomas-Hoover apparatus and are uncorrected. NMR spectra were determined on a GE QE-300 spectrometer. All chemical shifts are reported in parts per million (δ) relative to tetramethylsilane. The following abbreviations are used to denote signal patterns: s $=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, $b=$ broad, m $=$ multiplet. Infrared spectra were determined on a Nicolet DX10 FT-IR spectrometer. Mass spectral data were determined on a MAT-i31 spectrometer using free desorption (FD) conditions or a VG ZAB-3F spectrometer using fast atom bombardment (FAB) conditions. With the exception of NMR spectra, all spectroscopic and analytical data were determined by the Physical Chemistry Department (MC525) of the Lilly Research Laboratories. Silica gel flash chromatography was performed using a Waters Prep-500 HPLC, or E. Merck silica gel 60 with ethyl acetate/hexane gradients, unless otherwise indicated. Reversed-phase chromatography was performed on MCI CHP-20P gel using acetonitrile/water or methanol/water gradients. In general, salts were isolated via lyophilization. Tetrahydrofuran (THF) was distilled from sodiumbenzophe. none ketyl immediately prior to use. All reactions were conducted under argon atmosphere with stirring unless otherwise noted.

Method A. 4-(Benzyloxy)-2-[(6-methyl-6-cyanoheptyl)oxy]acetophenone (10). To a solution of 4 -(benzyloxy)-2hydroxyacetophenone $(9,9.65 \mathrm{~g}, 39.9 \mathrm{mmol}$! in dimethylformamide (150 mL) were added 6 -cyano-1-chloro-6-methylheptane $(6.86 \mathrm{~g}, 39.5 \mathrm{mmol}$), potassium carbonate $(10.6 \mathrm{~g}, 76.8 \mathrm{mmol})$.
and potassium iodide ($1.6 \mathrm{~g}, 9.6 \mathrm{mmol}$). The mixture was stirred and heated at $90^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the mixture was filtered and the resulting solution was concentrated in vacuo. Silica gel chromatography provided a clear oil ($12.1 \mathrm{~g}, 80 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 7.85^{\prime} \mathrm{d} . \mathrm{J}$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 7.3-7.5(\mathrm{~m}, 5 \mathrm{H}), 6.60(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.53(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.61 \mathrm{is}, 3 \mathrm{H}), 1.85-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.5-1.6(\mathrm{~m}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H})$.
Method B. 4-(Benzyloxy)-2-[(6-methyl-6-cyanoheptyl)oxy]ethylbenzene (11). To a solution of compound 10 (12.1 $\mathrm{g}, 31.6 \mathrm{mnol}$) in carbon tetrachloride $(30 \mathrm{~mL}$ were added trifluoroacetic acid ($44.4 \mathrm{~g}, 390 \mathrm{mmol}$) and triethylsilane 21.8 $\mathrm{g}, 188 \mathrm{mmol})$. The mixture was stirred at room temperature for 1.5 h . then diluted with ethyl acetate, and washed with aqueous sodium carbonate. The organic layers were collected, dried (magnesium sulfate), filtered, and concentrated in vacuo. Silica gel chromatography provided the desired product 10.6 g, 92% as a clear oil: ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{CDCl}_{3}$) $7.35-7.5(\mathrm{~m}, 5 \mathrm{H}, 7.06$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{dd} . J=6.5,2 \mathrm{~Hz}, 1 \mathrm{H})$. $5.06(\mathrm{~s}, 2 \mathrm{H}$ i $, 3.96 \mathrm{it}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.60!\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.8-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.5-1.6(\mathrm{~m}, 6 \mathrm{H}), 1.37 \mathrm{~s} .6 \mathrm{H}, 1.20 \mathrm{t} . . I=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}$.

Method C. 1-Bromo-2-(benzyloxy)-5-ethyl-4-[(6-meth-yl-6-cyanoheptyl)oxy]benzene (12). To a stirred solution of compound 11 ($10.6 \mathrm{~g}, 28.9 \mathrm{mmol}$) in carbon tetrachloride $(125 \mathrm{~mL})$ was added N-bromosuccinimide ($6.0 \mathrm{~g}, 33 \mathrm{mmol}$. Stirring was continued for 6 h at room temperature. The mixture was then diluted with methylene chloride and washed once with water. The organic layer was dried (magnesium sulfate।, filtered, and concentrated in vacuo. The residue was recrystallized from hexanerethyl acetate to provide the title compound ($12.6 \mathrm{~g}, 98 \%$) as a pale yellow solid: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl} ;$) $7.4-7.5(\mathrm{~m}, 5 \mathrm{H}), 7.22\left(\mathrm{~s}, 1 \mathrm{H}^{\prime}, 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.1^{7} \mathrm{i} \mathrm{s}\right.$. $2 \mathrm{H}), 3.90(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, 1.8 .5-$ $1.85 \mathrm{~m}, 2 \mathrm{H}, 1.50-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{t}, \mathrm{J}=6.3$ $\mathrm{Hz}, 3 \mathrm{H}$.
Method D. Representative Procedures for Suzuki Biaryl Couplings. In a round-bottom flask was placed a solution of the appropriate aryl bromide (1 equiv) in benzene' $(5 \mathrm{mLimmol}$ aryl bromide). To this solution were added Pd$\left(\mathrm{PPh}_{4}\right)_{4}(10 \mathrm{~mol} / t)$ and 2.0 M aqueous sodinm carbonate solution ($1.5 \mathrm{~mL} / \mathrm{mmol}$ aryl bromide). In a separate flask, the aryl boronic acid ${ }^{48}$ (2 equiv) was dissolved in ethanol 1.5 mL mmol aryl bromide). To the aryl boronic acid solution was added the aryl bromide solution, and the resulting mixture was heated to reflux with stirring for 16 h . The mixture was diluted with ethyl acetate and washed once with saturated aqueous ammonium chloride solution. The organic layers were dried (magnesium sulfate). filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography to provide the desired biaryl product.

Method E. A solution of the appropriate aryl bromide in THF was cooled to $-78^{\circ} \mathrm{C}$. To this solution was added tertbutyllithium 2 equiv. After stirring at $-\bar{i} 8^{\circ} \mathrm{C}$ for 30 min . a solution of zinc chloride (1 equiv' dissolved in a minimum of THF was added. The mixture was warmed to room temperature and stirred for 15 min . In a separate flask, a solution was prepared containing the appropriate aryl halide il equiv and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) ; 10 \mathrm{~mol} \mathbb{T}_{1}$) in tetrahydrofuran. This solution was added to the arylzinc solution, and the mixture was stirred at room temperature for $2-18 \mathrm{~h}$. The reaction mixture was diluted with ethyl acetate and washed once with aqueous ammonium chloride solution. The organic layer was dried (magnesium sulfate', filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography to provide the desired biaryl product.

1-(Benzyloxy)-4-ethyl-5-[(6-methyl-6-cyanoheptyl)oxy]2 -phenylbenzene (13a). Compound 12 was converted to the desired product in 75% yield by method D: :H NMR (CDCl ${ }^{\prime}$ $7.60 \mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, 7.3-7.5 \mathrm{rm}, 8 \mathrm{H}, 7.18 \mathrm{~s}, 1 \mathrm{H}, 6.59 \mathrm{rs}$, $1 \mathrm{H}), 5.04 \mathrm{is} .2 \mathrm{H}, 3.95$ (t, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, 2.63$ (q, $J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.8-1.9(\mathrm{~m}, 2 \mathrm{H}, 1.5-1.6(\mathrm{~m}, 6 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H}, 1.25 \cdot \mathrm{t}$, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$; MS-FD mie 439 (p); IR $\mathrm{CHCl}_{1,}$, cm 1.3013. 2977, 2943. 2238. 1611, 1488. Anal. ' $\mathrm{C}_{1} \mathrm{H}_{3}: \mathrm{NO}_{2}!\mathrm{C}, \mathrm{H} . \mathrm{N}$.

1-(Benzyloxy)-4-ethyl-5-[(6-methyl-6-cyanoheptyl)oxy]-2-(4-methylphenyl)benzene (13 b). Compound 12 was con-
verted to the desired product in 58\% yield by method D. Anal.

1-(Benzyloxy)-4-ethyl-5-[(6-methyl-6-cyanoheptyl)oxy]2 -(3 -methylphenyl)benzene (13 c). Compound 12 was converted to the desired product in, 5^{5} (, yield by method D. Anal. ${ }^{\prime} \mathrm{C}_{3}, \mathrm{H}_{3} ; \mathrm{NO}_{2}, \mathrm{C} . \mathrm{H}, \mathrm{N}$.
1-(Benzyloxy)-4-ethyl-5-(6-methyl-6-cyanoheptyl)oxy)2 -(2 -methylphenyl)benzene (13d). Compound 12 was converted to the desired product in 40^{\prime}, vield by method D. Anal. - $\mathrm{C}_{31} \mathrm{H}_{3}-\mathrm{NO}_{2}$, C. H. N^{2}

1-(Benzyloxy)-4-ethyl-2-(4-methoxyphenyl)-5-[(6-meth-yl-6-cyanoheptyl oxylbenzene (13 e). Compound 12 was converted to the desired product in 82% vield loy method D.

1-(Benzyloxy)-4-ethyl-2-(3-methoxypheny)-5-[(6-meth-yl-6-cyanoheptyl)oxy]benzene (13f). Compound 12 was converter to the desired product in 53 , vield by method D. Anal. $\mathrm{C}_{4}, \mathrm{H}, \mathrm{NO}_{;}, \mathrm{H}, \mathrm{N}:($: calce, 78.95 ; found, 77.12 .

1-(Benzyloxy)-2-l4-(dimethylamino)phenyl]-4-ethyl-5-[(6-methyl-6-cyanoheptylioxy]benzene (13 g). Compound 12 was converted to the rlesired product in 94% yield by method D. Anal. $C_{0} \mathrm{H}, \mathrm{N}, \mathrm{O}, \mathrm{H} . \mathrm{C}$: calcal, 79.30 found. -7.04.

1-(Benzyloxy)-4-ethyl-5-[(6-methyl-6-cyanoheptyl)oxy]-2-[3-(trifluoromethyl)phenyl]benzene (13 h). Compound 12 was converted to the desired product in 55 , yield by method E: 'H NMR ${ }^{\prime} \mathrm{CDCO} 1 ; 7.88 \mathrm{~s}, 1 \mathrm{H}, ~ i . \bar{i} 1 \mathrm{~d}, j=5 \mathrm{~Hz}$. $1 \mathrm{H}, 7.3 \cdots 7.5 \mathrm{~m}, 7 \mathrm{H}, 7.14 \mathrm{~s}, 1 \mathrm{H}, 6.60 \mathrm{~s}, 1 \mathrm{H}, 5.06 \mathrm{~s}, 2 \mathrm{H}$). $4.01 \mathrm{t} . . J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, 2.64 \mathrm{q} . \mathrm{J}=6.3 \mathrm{~Hz} .2 \mathrm{H}) .1 .8-1.9 \mathrm{~m}$. $2 \mathrm{H}, 1.5-1.7 \mathrm{~m} .6 \mathrm{H}, 1.38 \mathrm{~s} .6 \mathrm{H}: 1.22(\mathrm{t} . J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(Benzyloxy)-2-(4-chlorophenyl)-4-ethyl-5-[(6-methyl6 -cyanoheptyl)oxylbenzene (13 i). Compound 12 was converted to the desired product in 67°, yield by method D. Anal. C $\mathrm{C} \mathrm{H}_{3} \mathrm{NO}_{2} \mathrm{Cl}, \mathrm{C} . \mathrm{H} . \mathrm{N}$.

1-(Benzyloxy)-4-ethyl-5-[(6-methyl-6-cyanoheptyl)oxy]-2-(2-pyridinyl)benzene ($\mathbf{1 3 j}$), Compound 12 was converted to the desired product in Bot yiell by method F, Anal. Calcel for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}, \mathrm{O}, \mathrm{C}, \mathrm{H}: \mathrm{N}:$ calcd, 6.33 ; found, 5.74 .

1-(Benzyloxy)-4-ethyl-2-(4-fluorophenyl)-5-[(6-methyl-6-cyanoheptyl)oxy]benzene (13 k). Compound 12 was converted to the desired product in 80 , yield by method D: mp 77-79 ${ }^{\circ} \mathrm{C}$. Anal. $\mathrm{C}, \mathrm{H}, \mathrm{NO} \mathrm{F}, \mathrm{C}, \mathrm{H}, \mathrm{N} . \mathrm{F}$.

1-(Benzyloxy)-4-ethyl-2-(3-fluorophenyl)-5-[(6-methyl6 -cyanoheptyl)oxylbenzene (131). Compound 12 was converted to the desired product in 80° \% yield by method D.

Method F. Representative Procedure for Debenzylation. To a solution of the aryl benzyl ether in ethyl acetate or ethami was added ior, Pd-carbon lof whtwt. The atmosphere of the reaction was exchanged for hydrogen gas 1 atni and the reaction nixture stirred at rom temperature for $2 \cdot 48 \mathrm{~h}$. The dispersion was filtered over Celite and washed with cthyl acetate several tines. The resulting solution was concentrated in vacuo and purified by silica gel chromatography to provide the desired phenol.

4-Ethyl-5-[(6-methyl-6-cyanoheptyl)oxy]-2-phenylphenol (14a). Comprond 13a was converted to the desired product in 99 ; $\stackrel{\text { pro }}{ }$

4-Ethyl-5-[(6-methyl-6-cyanoheptyl)oxy]-2-(4-methylphenyl)phenol (14b). Compound 13 b was converted to the desired product in 44^{\prime} yield by method F . Anal. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N} \mathrm{NO}_{2}$ H. N: C: calced. 78.96; found. 76.84 .

4-Ethyl-5-[(6-methyl-6-cyanoheptyl)oxy]-2-(3-methylphenyl)phenol ($14 \mathbf{c}$). Comprund 13 c was converted to the desired product in 80 of, yield by method F . Anal. ' $\mathrm{C}_{2}, \mathrm{H}_{3}, \mathrm{NO}_{2}$ ' C. H, N.

4-Ethyl-5-[(6-methyl-6-cyanoheptyl)oxy]-2-(2-methylphenyl) phenol (14d). Compound $13 \mathbf{d}$ was converted to the desired product in 47% yield by method F . Anal. $\mathrm{C}_{2}: \mathrm{H}_{31}=\mathrm{NO}_{2}$ $\mathrm{H} . \mathrm{N}:(\because$ caled, 78.86 : found 78.11 .
4-Ethyl-5-[(6-methyl-6-cyanoheptyl)oxy]-2-(4-methoxyphenyliphenol (14e). Compround 13 e was converted to the desirerl proclucl in quantitative sield by method F. Anal. $\mathrm{C}, \mathrm{H}, \mathrm{NO}!\mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-Ethyl-5-[(6-methyl-6-cyanoheptyl)oxy]-2-(3-methoxyphenyl)phenol (14f). Comprand $13 f$ was converted to the
desired product in 72% yield by method F. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{3}\right)$ H; C: calcd, 75.56 ; found, 73.95 ; N : calcd, 3.67 ; found, 2.59 .

2-[4-(Dimethylamino) phenyl]-4-ethyl-5-[(6-methyl-6cyanoheptyl)oxylphenol ($\mathbf{1 4 g}$). Compound 13 g was converted to the desired product in 39% yield by method F : ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $7.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{~s}$, $6 \mathrm{H}), 1.8-1.9(\mathrm{~m}, 2 \mathrm{H}), 1.5-1.6(\mathrm{~m}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}$).
4-Ethyl-5-[(6-methyl-6-cyanoheptyl)oxy]-2-[3-(trifluoromethyl)phenyllphenol (14 h). Compound 13 h was converted to the desired product in 56% yield by method F . Anal. ${ }_{(} \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{2}$) C, H, N.

2-(4-Chlorophenyl)-4-ethyl-5-[(6-methyl-6-cyanoheptyl)oxylphenol (14i). Compound 13 i was converted to the desired product in 97% yield by method F. Anal. ($\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{2}{ }^{-}$ Cl $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-Ethyl-5-[(6-methyl-6-cyanoheptyl)oxy]-2-(2-pyridinyl)phenol ($\mathbf{1 4 j}$). To a solution of compound $\mathbf{1 3 j}(1.0 \mathrm{~g}, 2.2 \mathbf{~ m m o l})$ in methylene chloride (25 mL) at $-78{ }^{\circ} \mathrm{C}$ was added a 1 M solution of BBr_{3} in methylene chloride $(2.0 \mathrm{~mL})$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min , then warmed to room temperature, and stirred for 1 h . The mixture was quenched with aqueous NaHCO_{3} and diluted with methylene chloride. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography to provide the phenol ($400 \mathrm{mg}, 50 \%$ yield). Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$! C, H, N.

4-Ethyl-2-(4-fluorophenyl)-5-[(6-methyl-6-cyanoheptyl)oxylphenol ($\mathbf{1 4 k}$). Compound $\mathbf{1 3 k}$ was converted to the desired product in 75% yield by method F . Anal. ($\mathrm{C}_{23} \mathrm{H}_{28}$ $\left.\mathrm{NO}_{2} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
Method G. Representative Procedure for the Formation of gem-Dimethyltetrazoles. To a solution of the gemdimethylnitrile (1 equiv) in diglyme was added (N, N-dimethylamino ethanol hydrochloride (2 equiv) and sodium azide (4 equivi. The suspension was heated and maintained at 130 ${ }^{\circ} \mathrm{C}$ with stirring for $8-72 \mathrm{~h}$. The mixture was diluted with methylene chloride and acidified with dilute hydrochloric acid. The organic layer was dried (magnesium sulfate), filtered, and concentrated in vacuo. The residue was dissolved in ethanol, stirred with aqueous sodium hydroxide (4 equiv) at room temperature for 30 min , and then concentrated in vacuo. Except where noted, the product was purified on HP20 P reverse phase resin eluting with water followed by a methanol/water gradient. The desired fractions were combined and concentrated in vacuo. The residue was then lyophilized to produce the tetrazole as its sodium salt.

2-Phenyl-4-ethyl-5-[[6-(2H-tetrazol-5-yl)-6-methylheptylloxylphenol Sodium Salt Dihydrate (15a). Compound 14a was converted to the desired product in 34% yield by method G: ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $7.55(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.60$ ($\mathrm{s}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-$ $1.70(\mathrm{~m}, 6 \mathrm{H}), 1.25-1.35(\mathrm{~m}, 8 \mathrm{H}), 1.10(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}-$ FAB m/e 439 (p); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3192, 2970, 2937, 1617, 1488, 1453, 1214. Anal. ($\left.\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-Ethyl-2-(4-methylphenyl)-5-[[6-methyl-6-(2H-tetrazol-5-yl)heptylloxylphenol Disodium Salt Sesquihydrate (15b), Compound $\mathbf{1 4 b}$ was converted to the desired product in 29 c yield by method G . Anal. ($\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-Ethyl-2-(3-methylphenyl)-5-[[6-methyl-6-(2H-tetrazol-$\mathbf{5}$-yl)heptylloxylphenol Sodium Salt (15 c). Compound 14c was converted to the desired product in 27% yield by method G: 'H NMR (DMSO- d_{6}) $7.40(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.15(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.45(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.5-1.7(\mathrm{~m}, 6 \mathrm{H}), 1.2-$ $1.4(\mathrm{~m}, 8 \mathrm{H}), 1.07(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$; MS-FAB m/e $453(\mathrm{p})$.

4-Ethyl-2-(2-methylphenyl)-5-[[6-methyl-6-(2H-tetrazol-5-yl)heptylloxylphenol Disodium Salt 1.7 Hydrate (15d), Compound 14 d was converted to the desired product in 35% yield by method G. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}_{2} \cdot 1.7 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{N} ; \mathrm{H}$: calcd, 6.99; found, 7.41.

4-Ethyl-5-[[6-methyl-6-(2H-tetrazol-5-yl)heptyl]oxy]-2-(4-methoxyphenyl)phenol Sodium Salt (15e). Compound

14e was converted to the desired product in 29% yield by method G: ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) 7.43 d , $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.91 ($\mathrm{s}, 1 \mathrm{H}$) , $6.89(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{t}, J=5.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.7-1.9(\mathrm{~m}$, $6 \mathrm{H}), 1.2-1.4(\mathrm{~m}, 8 \mathrm{H}), 1.06(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}-\mathrm{FAB}$ m/e 425 (p).

4-Ethyl-5-[[6-methyl-6-(2H-tetrazol-5-yl)heptyl]oxy]-2-(3-methoxyphenyl)phenol Disodium Salt (15f). Compound 14 f was converted to the desired product in 16% yield by method G: ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $7.26(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.05-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=2,6 \mathrm{~Hz}, 1 \mathrm{H})$. $6.60(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{q}, J=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.5-1.7(\mathrm{~m}, 6 \mathrm{H}), 1.2-1.4(\mathrm{~m}, 8 \mathrm{H}) 1.08(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}$); IR (KBr) 3416, 2961, 2936, 2869, 1608, 1487, 1140 cm^{-1}; MS-FAB m/e 469 (p).
2-[4-(Dimethylamino)phenyl]-4-ethyl-5-[[6-methyl-6-(2H-tetrazol-5-yl)heptylloxylphenol Disodium Salt (15g), Compound $\mathbf{1 4 g}$ was converted to the desired product in 29% yield by method G: ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $7.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}$. $2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{t}$, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.5-1.7(\mathrm{~m}, 6 \mathrm{H})$, $1.2-1.4(\mathrm{~m}, 8 \mathrm{H}), 1.06(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
4-Ethyl-5-[[6-methyl-6-(2H-tetrazol-5-yl)heptyl]oxy]-2-[4-(trifluoromethyl)phenyl]phenol Disodium Salt (15h), Compound $\mathbf{1 4 h}$ was converted to the desired product in 29% yield by method G: ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}!7.80-7.90(\mathrm{~m}, 2 \mathrm{H}$), $7.55-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.84$ $(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.7-1.9(\mathrm{~m}, 6 \mathrm{H})$. $1.2-1.4(\mathrm{~m}, 8 \mathrm{H}), 1.05(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$; MS-FAB mie 507 (p).

2-(4-Chlorophenyl)-4-ethyl-5-[[6-methyl-6-(2H-tetrazol-5-yl)heptylloxylphenol Sodium Salt (15i). Compound 14i was converted to the desired product in 38% yield by method G. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{ClNa} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-Ethyl-5-[[6-methyl-6-(2H-tetrazol-5-yl)heptyl]oxy]-2-(2-pyridinyl)phenol Disodium Salt (15j). Compound 14j was converted to the desired product in 28% yield by method G. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{N}$; H: calcd, 6.53; found. 7.04 .

4-Ethyl-2-(4-fluorophenyl)-5-[[6-methyl-6-(2H-tetrazol$\mathbf{5 - y l}$)heptyl]oxylphenol Sodium Salt ($\mathbf{1 5 k}$). Compound $\mathbf{1 4 k}$ was converted to the desired product in 56% yield by method G. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{FNa}\right.$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

Method H, 7-[2-Ethyl-4-(3-fluorophenyl)-5-(benzyl-oxy)phenoxyl-2-methyl-2-(1H-tetrazol-5-yl)heptane (16). A mixture of compound $131(1.44 \mathrm{~g}, 3.22 \mathrm{mmol})$, triethylamine hydrochloride ($4.10 \mathrm{~g}, 29.8 \mathrm{mmol}$), and sodium azide (1.95 g , 30.0 mmol) in dimethylformamide (40 mL) was heated in ar1 oil bath at $125{ }^{\circ} \mathrm{C}$ for 17 h . Further triethylamine hydrochloride $(4.0 \mathrm{~g})$ and sodium azide (2.0 g) were added after 5 h . The mixture was cooled, diluted with water, acidified with 1.0 N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed once with water and once with saturated sodium chloride solution, dried (sodium sulfate), and concentrated in vacuo. Silica gel chromatography with dichloromethane/methanol provided $1.12 \mathrm{~g}(72 \%)$ of the desired product: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 7.56(\mathrm{~m}, 1 \mathrm{H}), 8.0(\mathrm{~m}, 7 \mathrm{H}), 7.16(\mathrm{~s}$. $1 \mathrm{H}), 7.00(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~m}, 2 \mathrm{H}), 2.66$ $(\mathrm{m}, 2 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H})$, $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{t}, 3 \mathrm{H})$.

7-[2-Ethyl-4-(3-fluorophenyl)-5-(benzyloxy)phenoxy]-2-methyl-2-(1H-tetrazol-5-yl)heptane (17). A mixture compound $16(1.0 \mathrm{~g})$ and $10 \% \mathrm{Pd}$-carbon (1.0 g) in ethanol 200 mL) was hydrogenated on a Parr apparatus at $35-40 \mathrm{psi}$ for 2 h . The mixture was filtered and the filtrate evaporated in vacuo. Silica gel chromatography of the residue eluting with dichloromethane/methanol provided the desired product (620 $\mathrm{mg}, 75 \%$) as a white crystalline solid: $\mathrm{mp} 107-110^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Method I. 4-(Benzyloxy)-2-(3-chloropropoxy)acetophenone (18a). A mixture of 4 -(benzyloxy)-2-hydroxyacetophenone ($9,150 \mathrm{~g}, 0.618 \mathrm{~mol}$), 1-bromo-3-chloropropane (245 mL . 2.46 mol i), potassium carbonate ($166 \mathrm{~g}, 1.20 \mathrm{~mol}$), and methyl sulfoxide (400 mL) in 2 -butanone (1 L) was refluxed for 24 h . The reaction mixture was cooled and filtered. The mixture was concentrated in vacuo, diluted with ethyl acetate, and
washed twice with water and twice with saturated sodium chloride solution. The organic layer was dried (magnesium sulfate), filtered, and concentrated in vacuo. Silica gel chromatography (ethyl acetate, methylene chloride) of the resulting oil provided 162 g (82%) of the desired product as a white crystalline solid: $\mathrm{mp} 69-70^{\circ} \mathrm{C}$. Anal. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Cl}, \mathrm{C}, \mathrm{H}$.
4-(Benzyloxy)-2-(4-chlorobutoxy)acetophenone (18b). Alkylation of compound 9 (37.9 mmol) with 1 -bromo- 4 -chlorobutane 152 mmol$)$ using method I provided $7.70 \mathrm{~g}(61 \mathrm{C})$ of product as a white solid: $\mathrm{mp} 58-60^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{Cl}\right)$ C, H.

4-(Benzyloxy)-2-(5-chloropentoxy)acetophenone (18c). Alkylation of compound 9 (64.0 mmol) with 1 -bromo-5-chloropentane (64.0 mmol) using method I provided 16.1 g (73% of product as a white solid: $\mathrm{mp} 76-i 7^{\circ} \mathrm{C}$.

4-(Benzyloxy)-2-(3-chloropropoxy)ethylbenzene (19a). Reduction of compound 18a (232 mmol) using method B provided $48.9 \mathrm{~g}(69 \%)$ of the desired product as a colorless oil.

4-(Benzyloxy)-2-(4-chlorobu toxy)ethylbenzene (19b). Reduction of compound $\mathbf{1 8 b}$ (10.5 mmol) using method B provided $2.60 \mathrm{~g}(79 \%$) of product as a colorless oil. Anal. $\left.1 \mathrm{C}_{1}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Cl}\right) \mathrm{C}, \mathrm{H}$.

4-(Benzyloxy)-2-(5-chloropentoxy)ethylbenzene (19c). Reduction of compound 18 c (43.2 mmol) using method B provided $10.4 \mathrm{~g} i 73 \%$ of product as a faint yellow oil. Anal. $1 \mathrm{C}_{31} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Cl}!\mathrm{H}$; C: calcd, 72.17 ; found, $\overline{7} 1.24$.

4-(Benzyloxy)-5-bromo-2-(3-chloropropoxy)ethylbenzene (20a). Bromination of compound 19a (164 mmol using method C provided 4.60 g (73%) of pure product as a crystalline solid: mp $45-46^{\circ} \mathrm{C}$. Anaì. ($\left.\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{BrCl}\right) \mathrm{C}, \mathrm{H}$.

4-(Benzyloxy)-5-bromo-2-(4-chlorobutoxy)ethylbenzene (20b). Bromination of compound $\mathbf{1 9 b}(7.84 \mathrm{mmol}$) using method C provided $2.52 \mathrm{~g}(81 \%)$ of product as a crystalline solid from hexane: $\mathrm{mp} 65-66^{\circ} \mathrm{C}$. Anal. $\left.\mathrm{I}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{BrCl}\right) \mathrm{C}$. H.

4-(Benzyloxy)-5-bromo-2-(5-chloropentoxy)ethylbenzene (20 c). Bromination of compound $19 \mathrm{c}(31.0 \mathrm{mmol})$ using method (C provided 10.0 g (81%) of product as a white crystalline solid from hexane. Anal. ($\left.\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{BrCl}\right) \mathrm{C}, \mathrm{H}$.

4-(Benzyloxy)-2-(3-chloropropoxy)-5-phenyle thylbenzene (21a), Reaction of compound 20 (13.1 mmol) with phenylboronic acid (40.2 mmol using method D provided 4.00 g (80%) of the desired product as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left.{ }^{1} \mathrm{CDCl}_{3}!7.63 \mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.28-7.53(\mathrm{~m}, 9 \mathrm{H}, 7.21 \mathrm{~s}$, $1 \mathrm{H}, 6.63 \mathrm{is}, 1 \mathrm{H}, 5.09$ (s. 2 H$), 4.15 \mathrm{tt}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.81 \mathrm{it}$, $J=6 \mathrm{~Hz}, 2 \mathrm{H}, 2.67 \mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, 2.28$ iquintet, $J=6 \mathrm{~Hz}$, $2 \mathrm{H}, 1.28(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$.

4-(Benzyloxy)-2-(3-chloropropoxy)-5-(4-fluorophenyl)ethylbenzene (21b). Reaction of compound $20 \mathrm{a}(2.60 \mathrm{mmol}$) with (4-fluorophenyl)boronic acid (3.89 mmol) using method D provided $870 \mathrm{mg}(84 \%)$ of the desired product as a crystalline solid: $\mathrm{mp} 60-63^{\circ} \mathrm{C}$. Anal. $\left.\mathrm{C}_{2}: \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{FCl}\right) \mathrm{C}, \mathrm{H}$.

4-(Benzyloxy)-2-(4-chlorobutoxy)-5-(4-fluorophenyl)ethylbenzene ($\mathbf{2 1 c}$). Reaction of compound $\mathbf{2 0 b}(26.4 \mathrm{mmol}$, with i4-fluorophenyl boronic acid (79.2 mmol) using method D provided 2.07 g (87%) of product as a white solid: mp 48 $49^{\circ} \mathrm{C}$. Anal. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{ClF}, \mathrm{C}, \mathrm{H}$.

4-(Benzyloxy)-2-(5-chloropentoxy)-5-(4-fluorophenyl)ethylbenzene (21d). Reaction of compound $20 \mathrm{c}(21.4 \mathrm{mmol}$! with (4 -fluormphenyliboronic acid (32.0 mmol) using method D provided $7.04 \mathrm{~g}(77 \%)$ of product as a white solid from

Method J. 4-(Benzyloxy)-5-(4-fluorophenyl)-2-(3-iodopropoxy) ethylbenzene (22a). A mixture of compound 21 b (20.0 g .50 .2 mmol) and sodium iodide ($75.3 \mathrm{~g}, 502 \mathrm{mmol}$) in 2 -butanone (200 mL) was refluxed for 6 h . The reaction mixture was cooled to room temperature, diluted with an equal volume of ether, and washed once with water. The organic layer was dried (sodium sulfate), filtered, and concentrated in vacuo to provide 24.6 g (100%) of product as a colorless oil. Anal. ' $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{FI}$) H; C: calcd, 58.79 ; found, 60.00 .

4-(Benzyloxy)-5-(4-fluorophenyl)-2-(4-iodobutoxy)ethylbenzene (22b). Reaction of compound 21c 4.84 mmol , using method J provided the desired product in quantitative yield as a colorless oil. This material was not characterized further but used directly.

7-[3-[5-(Benzyloxy)-4-bromo-2-ethylphenoxy]propoxy]-3,4-dihydro-8-propyl-2H-1-benzopyran-2-carboxylic Acid Ethyl Ester (24), To a solution of compound 23 (2.1 g. 8.1 $\mathrm{mmol})^{15.20}$ in dimethylformamide (5 mL) was carefully added a suspension of sodium hydride $(190 \mathrm{mg}, 8.1 \mathrm{mmol}, 60 \%$ oil dispersion) in dimethylformamide (10 mL , at room temperature and the resulting mixture stirred for 30 min . Compound 20 a ($5.09 \mathrm{~g}, 13.3 \mathrm{mmol}$) was converted to the iodide by use of method J. A mixture of the crude iodide and 18 -crown-6 110 $\mathrm{mg}, 0.40 \mathrm{mmol}$; was added, and the resulting mixture was stirred at room temperature for 1.5 h . The reaction was quenched with water, and the reaction mixture was extracted twice with ethyl acetate. The organic layer was dried 'magnesium sulfate), filtered, and concentrated in vacuo. The resulting product was purified by silica gel chromatography to give $2.5 \mathrm{~g}\left(86 \%\right.$) of desired product. Anal. ($\left.\left.\mathrm{C}_{13} \mathrm{H}_{; 9}\right) ; \mathrm{Br}\right) \mathrm{C}$. H.

7-[3-[[2-(Benzyloxy)-5-ethyl[1,1'-biphenyl]-4-yl]oxy]pro-poxy]-3,4-dihydro-8-propyl-2H-1-benzopyran-2-carboxylic Acid Ethyl Ester (25). Reaction of compound 24 :2.24 mmol) with phenylboronic acid (10.7 mmol) using method D provided 880 mg (64% of product as an oil. Anal. ' $\mathrm{C}_{3}, \mathrm{H}_{4} ; \mathrm{O}_{6}$ ' H; C: caled, 76.94; found, 75.70 .

7-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]-4-yl)oxy]pro-poxy]-3,4-dihydro-8-propyl-2H-1-benzopyran-2-carboxylic Acid Ethyl Ester (27a). Compound 25 (1.4 mmol was debenzylated using method F. Purification via silica gel chromatography provided $354 \mathrm{mg}\left(49^{\circ}\right.$) of pure product as a colorless oil. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}$.
Method K. 7-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]-4-yl)oxy]propoxy]-3,4-dihydro-8-propyl-2H-1-benzopyran-2-carboxylic Acid (27b). A solution of compound 27a 10.37 $\mathrm{g}, 0.71 \mathrm{mmol}$ in THF (5 mL) and methanol 15 mL) was treated with 5 N sodium hydroxide solution 1 mL with stirring at room temperature for 1 h . The reaction mixture was concentrated in vacuo, diluted with water, and acidified to pH 1 with 5 N hydrochloric acid. The resulting suspension was extracted with ethyl acetate. The organic layer was dried magnesium sulfate), filtered, and concentrated in vacuo. Recrystallization from toluene hexane provided $245 \mathrm{mg}, 71 \%$ of product as a white solid: ${ }^{2} \mathrm{H}$ NMR $\left.\left(\mathrm{CDCl}_{3}\right) 7.45 \mathrm{im}, 6 \mathrm{H}\right), 7.02$ ($\mathrm{s}, 1 \mathrm{H}, 6.86$ $(\mathrm{d}, J=8.57 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.53 \mathrm{id} . J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$). $5.30 \mathrm{brs}, 1 \mathrm{H}, 4.78 \mathrm{dd}, J=3.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 4.20 \mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~m}, 8 \mathrm{H}), 2.26 \mathrm{~m} .6 \mathrm{H}:$ $1.55(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz} .3 \mathrm{H}):$ MS-FAB mie 491 (p-11, 490 (p), 277 ; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}, 3426$. 2959, 2870, 1718,1615 . Anal. ${ }^{(} \mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{6}$, C. H .
Method L. 8-Propyl-7-[3-[5-(benzyloxy)-2-ethyl-4-(4-fluorophenyl)phenoxylpropoxy]-3,4-dihydro-2H-1-ben-zopyran-2-carboxylic Acid Ethyl Ester (26). A mixture of compound 22a $1700 \mathrm{mg}, 1.50 \mathrm{mmol}$, compound 231374 mg . 1.42 mmol , and potassium carbonate 490 mg .3 .55 mmol ' in dimethylformamide 10 mL was stirred at room temperature for 24 h . The reaction mixture was diluted with water and extracted once with ethyl acetate. The organic layer was dried (sodium sulfate), filtered, and concentrated in vacuo. Purification via silica gel flash chromatography provided 0.46 g ($52 \mathrm{c}_{\text {; }}$: of product as a clear oil. Anal. ${ }^{(} \mathrm{C}_{39} \mathrm{H}_{43} \mathrm{O}_{6}, \mathrm{C}, \mathrm{H}, \mathrm{F}$.

8-Propyl-7-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy] propoxy]-3,4-dihydro-2H-1-benzopyran-2-carboxylic Acid Ethyl Ester (28a). Compound 26 (2.57 mmol was debenzylated using method F. Purification via silica gel chromatography provided $1.02 \mathrm{~g}(74 \%)$ of pure product. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{O}_{6}\right.$) C. $\overrightarrow{\mathrm{H}}$.

8-Propyl-7-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphe-noxy]propoxy]-3,4-dihydro-2H-1-benzopyran-2-carboxylic Acid (28b). Compound 28a (1.8 mmol) was hydrolyzed using method K. Recrystallization of the resulting solid from ethyl acetate hexane provided $568 \mathrm{mg} 162 \%$ of product as a white solid. Anal. ($\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{6}$) C, H.
Ethyl 3-[4-[7-Carbomethoxy-9-oxo-3-[3-[5-(benzyloxy)-2-ethyl-4-phenylphenoxy]propoxy $]-9 \mathrm{H}$-xanthene] $]$ propanoate (30a). Compound $29^{14}(1.97 \mathrm{mmol})$ was reacted with compound 21 a 1.97 mmul) using method O to provide crude product as an oil. This material was not purified further bre converted directly to compound 30b.

3-[4-[7-Carboxy-9-oxo-3-[3-(2-ethyl-5-hydroxy-4-phe-nylphenoxy)propoxy]-9H-xanthenel]propanoic Acid Disodium Trihydrate (30b). Compound 30a was debenzylated using method F and hydrolyzed using method K . The residue was dissolved in a minimum of 1 N sodium hydroxide solution and purified on CHP-20 resin to provide $390 \mathrm{mg}(56 \%$) of product as the disodium salt trihydrate. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O}_{9}\right.$ $\mathrm{Na}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{C}, \mathrm{H}$.
Ethyl 3-[4-[7-Carbomethoxy-9-oxo-3-[3-[2-ethyl-5-(ben-zyloxy)-4-(4-fluorophenyl)phenoxy]propoxy]-9H-xanthene]] propanoate (31a). Compound $29(1.49 \mathrm{mmol})$ was reacted with compound 22 a using method L to provide crude product. Recrystallization (hexane/ethyl acetate) provided 755 mg (699°) of pure product as an off-white crystalline material: $\mathrm{mp} 100{ }^{\circ} \mathrm{C}$. Anal. $\left.\mathrm{C}_{14} \mathrm{H}_{41} \mathrm{O}_{9} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}$.
3-[4-[7-Carboxy-9-oxo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-9H-xanthene]]propanoic Acid Disodium Trihydrate (31b), Compound 31a (1.89 mmol ' was debenzyiated using method F and hydrolyzed using method K . The residue was dissolved in a minimum of 1 N sodium hydroxide solution and purified on CHP-20 resin to provide 242 mg (46% ! of product as the disodium salt trihydrate: ${ }^{3} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6} ! 8.65 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.29 (dd, $J=8.6 .1 .8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 3 \mathrm{H})$, $7.11(\mathrm{~m} .3 \mathrm{H}), 6.92 \mathrm{~s}, 1 \mathrm{H}, 6.89(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 4 \mathrm{H}), 3.10(\mathrm{~m}$, $2 \mathrm{H}), 2.48$ ' $\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~m}, 4 \mathrm{H}, 1.09 \mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}: \mathrm{MS}-\mathrm{FAB}$ m/e 64 - $18, \mathrm{p}$), 624 (30), 623 (61), 601 (i4), $309: 100: 307$ 154): IR $\mathrm{KBr}, \mathrm{cm}^{-1}, 3414$ (b), 2926, 1609, 1391, 1276, 1101, 785 . Anal. $\mathrm{C}_{34} \mathrm{H}_{2} ; \mathrm{O}_{9} \mathrm{FNa}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \mathrm{C}, \mathrm{H}$.

Method M. 3,3-Diethoxy-2,3-dihydro-1H,7H-pyrano-[2,3-c]xanthen-7-one (33). A mixture of 3-hydroxy-9-0xo-9Hxanthene ($32.3 .00 \mathrm{~g}, 14.2 \mathrm{mmol}$), triethyl orthoacrylate (5.26 $\mathrm{g}, 28.4 \mathrm{mmol}$. and pivalic acid ($0.720 \mathrm{~g}, 7.06 \mathrm{mmol}$) in toluene ${ }_{7} 75 \mathrm{~mL}$ was refluxed for $16 \mathrm{~h},{ }^{11.27}$ The mixture was cooled to room temperature and diluted with ether. The resulting mixture was washed once with water and once with dilute sodium hydroxide solution. dried isodium sulfate), filtered, and concentrated in vacuo. Recrystallization 'hexane/ethyl acetate) of the residue provided $4.31 \mathrm{~g}(90 \%)$ of product as a white crystalline solid: mp $156{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{5}\right.$) C, H.

Method N. 3-[4-(3-Hydroxy-9-oxo-9H-xanthene)]propanoic Acid Ethyl Ester (34). Compound $33(3.40 \mathrm{~g}, 10.0$ mmol) was dissolved in tetrahydrofuran (30 mL) and treated at room temperature with 1 N hydrochloric acid solution $(0.20$ mL for 1 h . The reaction was diluted with ethyl acetate and washed twice with water. The organic phase was dried 'sodium sulfate), filtered, and concentrated in vacuo. The resulting solid was recrystallized (hexane ethyl acetate! to provide 3.09 g (99\%) of product as a white microcrystalline solid: mp $181^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{N} M \mathrm{MR}\left(\mathrm{CDCl}_{3}\right) 9.10$ (s, $1 \mathrm{H}, \mathrm{OH}$) 8.34 (dd. $\left.J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}^{\prime}, 8.17 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.71^{\prime} \mathrm{t}, J=8$ $\mathrm{Hz}, 1 \mathrm{H}, 7.50 \mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 7.34 \mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03 \mathrm{~d}, J=8.1 \mathrm{~Hz} .1 \mathrm{H}), 4.19 \mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}, 2.90(\mathrm{t} . J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; MS-FD mie 312 (p; 1R (CHCl), cm ${ }^{-1}, 3260$ (b), 3025, 1648 , 1620, 1607, 1467, 1328. 1242. Anal. ($\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5}$) C, H.

Method O. 3-[4-[3-[3-[0̃-(Benzyloxy)-2-ethyl-4-phenyl-phenoxy]propoxy]-9-oxo-9H-xanthenel]propanoic Acid Ethyl Ester (35a). A mixture of compound $34(0.821 \mathrm{~g}, 2.63$ mmol , compound $21 \mathbf{a}(1.00 \mathrm{~g}, 2.63 \mathrm{mmol}$), potassium carbonate $(1.82 \mathrm{~g} .13 .2 \mathrm{mmol})$. potassium iodide $(44 \mathrm{mg}, 0.26 \mathrm{mmol})$, and methy! sulfoxide (2 mL) in 2-butanone (15 mL) was refluxed for 18 h . The reaction mixture was cooled to room temperature, diluted with ether, and washed once with water and once with dilute aqueous sodium hydroxide. The organic layer was dried (sodium sulfate), filtered, and concentrated in vacuo to provide an orange oil. Silica gel chromatography provided 1.48 g (86% : of pure product as a white solid: mp $99-102{ }^{\circ} \mathrm{C}$. Anal. $\mathrm{C}_{1} \geqslant \mathrm{H}_{4}, \mathrm{O}=\mathrm{C}, \mathrm{H}$.

3-[4-[3-[3-(2-Ethyl-5-hydroxy-4-phenylphenoxy)pro-poxy]-9-0xo-9H-xanthenel]propanoic Acid Disodium Hemihydrate ($\mathbf{3 5 b}$). Compound $\mathbf{3 5 a}$ (1.89 mmol) was debenzylated using method F and hydrolyzed using method K . The residue was dissolved in a minimum of 1 N sodium hydroxide solution and purified on CHP-20 resin to provide
$817 \mathrm{mg}(73 \%)$ of product as the disodium salt hemihydrate. Anal. ($\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$) C, H.

Ethyl 3-[4-[9-oxo-3-[3-[5-(benzyloxy)-2-ethyl-4-(4-fluorophenyl) phenoxy]propoxy]-9H-xanthenel]propanoate (36a). Compound $34(2.63 \mathrm{mmol})$ was reacted with compound 21b using method O to provide crude product, which was recrystallized (hexane/ethyl acetate) to provide 610 mg 161%) of pure product as an off-white crystalline solid: mp 115 ${ }^{\circ} \mathrm{C}$. Anal. $\left.{ }^{(} \mathrm{C}_{42} \mathrm{H}_{39} \mathrm{O}-\mathrm{F}\right) \mathrm{C}, \mathrm{H}, \mathrm{F}$.

3-[4-[9-Oxo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydrox-yphenoxy]propoxy]-9H-xanthene]]propanoic Acid (36b). Compound $36 \mathbf{a}$ (0.742 mmol) was debenzylated using method F and hydrolyzed using method K to provide crude product. Recrystallization (toluene/ethyl acetate) provided 278 mg (67%) of product as a white crystalline solid. Anal. $\mathrm{C}_{33} \mathrm{H}_{2} 9 \mathrm{O}_{-\mathrm{F}} / \mathrm{C}$. H.

Method P, 1,3-Dimethoxy-2-propylbenzene (38a). To a solution of 1,3 -dimethoxybenzene $37,160 \mathrm{~g}, 1.10 \mathrm{~mol}$) in THF (1.6 L) cooled to $-70^{\circ} \mathrm{C}$ was added n-butyllithium in hexane (1.28 mol$)$ at a rate which maintained the temperature of the reaction mixture at less than $-45^{\circ} \mathrm{C}$. When addition was complete, the mixture was allowed to warm to room temperature and stirred for 2 h . The mixture was cooled to $-10^{\circ} \mathrm{C}$ and 1 -iodopropane ($197 \mathrm{~g}, 1.16 \mathrm{~mol}$) added dropwise. The mixture was allowed to warm to room temperature and stirred for 18 h . The mixture was then refluxed for 5 h , cooled to $-10{ }^{\circ} \mathrm{C}$, and carefully treated with methanol and ice water. The resulting mixture was extracted twice with 1 L portions of ether. The combined organic layers were dried (magnesium sulfate), filtered, and concentrated in vacuo. The crude product was passed through a short pad of silica eluting with 80% hexane $/ 20 \%$ ethyl acetate. Concentration of the combined washings in vacuo provided 194 g (93\%) of pure product.

2-Butyl-1,3-dimethoxybenzene (38b). 1,3-Dimethoxybenzene (109 mmol) was reacted with 1 -iodobutane 1115 mmol । using method P except that the final reaction mixture was not refluxed. Purification via silica gel chromatography provided $15.0 \mathrm{~g}(71 \%$) of product as a yellow oil.

1,3-Dimethoxy-2-[1-(2-methylpropyl)]benzene (38c). 1,3Dimethoxybenzene (272 mmol) was reacted with 1 -iodo- 2 . methylpropane (272 mmol) using method P to provide crude product. Purification via silica chromatography provided 13.8 $\mathrm{g}(26 \%$ of product as a colorless oil.

2-Benzyl-1,3-dimethoxybenzene (38d). 1,3-Dimethoxybenzene (391 mmol) was reacted with benzyl bromide (411 mmol' using method P except that the final reaction mixture was not refluxed. Purification via silica gel chromatography (etherthexane) provided $18.8 \mathrm{~g} 18 \%$; of product as a whiti solid: $53-50^{\circ} \mathrm{C}$. Anal. $\mathrm{C}_{1 ;} \mathrm{H}_{16} \mathrm{O}_{2}$! $\mathrm{C} . \mathrm{H}$.

Method Q. 2-Propylresorcinol (39a), Compuund 38a 1.00 mol) was melted with pyridinium hydrochloride 925 g . 8.00 mol) at $180^{\circ} \mathrm{C}$ for 8 h . The mixture was cooled to 110 ${ }^{\circ} \mathrm{C}$, diluted with water 1800 mL , cooled to room temperature. and stirred for 18 h . The mixture was diluted with additional water (1 L) and extracted four times with ethyl acetate (1 L portions. The organic layers were combined and washed fourtimes with 1 N HCl (1 L portions). The organic layer was dried (sodium sulfate), filtered, and concentrated in vacuo. The resulting material was dissolved in 90% hexane 10% ethyl acetate, passed down a short plug of silica gel, and concentrated in vacuo to provide 145 g (95%) of product as a crystalline solid.

2-Butylresorcinol (39b), Compound $\mathbf{3 8 b} \mathbf{~} \cdot 77.6 \mathrm{mmol}$ i was demethylated using method Q to provide 19 g of the desired product as a light brown wil. This material was not purified further but used directly in the preparation of compund 41 e .

2-[1-(2-Methylpropyl)]resorcinol (39c). Compound 38c $(92.8 \mathrm{mmol}$) was demethylated using method Q to provide crude product. Purification via silica gel chromatography (ether hexane) provided 15.0 g (98%) , f product as a light yellow oil. Anal. $\mathrm{C}_{10}, \mathrm{H}_{14} \mathrm{O}_{2}$) C, H .

2-Benzylresorcinol (39d), Compound 38d (65.8 mmol : was demethylated using method Q to provide crude product. Purification via silica gel chromatography provided 7.76 g (60%) of product as an off-white crystalline material: $\mathrm{mp} 81-$ $83^{\circ} \mathrm{C}$. Anal. ${ }^{(} \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}$, C. H .

Method R. 2-[3-Hydroxy-2-propylphenoxy]benzoic Acid Methyl Ester (41a). A mixture of compound 39a ${ }^{175.0}$ g, 0.490 mol), methyl 2 -iodobenzoate ($129 \mathrm{~g}, 0.490 \mathrm{~mol}$, copper bronze $47.0 \mathrm{~g}, 0.740 \mathrm{~mol})$, and potassium carbonate 181.7 g , 0.592 mol) in dry pyridine (1 L) was thoroughly degassed with nitrogen and then refluxed for 6 h . The mixture was cooled to room temperature, filtered, and concentrated in vacuo to reveal a dark sludge. This material was dissolved in ethyl acetate and passed down a short ($\sim 500 \mathrm{~cm}^{3}$) Florisil column. The resulting solution was washed twice with saturated copper sulfate solution and concentrated in vacuo. The residue was dissolved in methylene chloride and washed twice with 0.5 N sodium hydroxide solution. The organic layer was dried (sodium sulfate), filtered, and concentrated in vacuo to provide a clear brown oil. Silica gel chromatography provided 45.4 g (32\%) of product as a white solid: $m p 80^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (CDCl , $7.92 \mathrm{ddd} . J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 7.13 \mathrm{t}$. $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (t. $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ ' d. $. J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65$ (bs. $1 \mathrm{H}, \mathrm{OH}, 3.88$ (s, 3 H), 2.66 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.62 'hextet. $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H} ;$ MS-FD mie 286 p p : IR $\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1} ; 3350$ (b), 2950, 1718, 1602, 1480. 1306, 1255. 1086, 981. Anal. $\left(\mathrm{C}_{1}: \mathrm{H}_{1 \times} \mathrm{O}_{4}, \mathrm{C}, \mathrm{H}\right.$.

2-(3-Hydroxy-2-propylphenoxy)phenylacetic Acid Methyl Ester (41b). Compound 39 a $(39.9$ mmol was reacted with methyl 2 -iodophenylacetate (39.9 mmol using method R to provide $1.27 \mathrm{~g}(11 \%)$ of product as a yellow oil.

2-Fluoro-6-(3-hydroxy-2-propylphenoxy)benzoic Acid

 Methyl Ester (41c). Compound 39a (46.8 mmol) was reacted with 2-fluoro-6-iodobenzoic acid methyl ester (46.8 mmol) using method R to provide $3.10 \mathrm{~g}(22 \%)$ of product as an oil.Method S. 4-Fluoro-6-(3-hydroxy-2-propylphenoxy)benzoic Acid Methyl Ester (41d). To a solution of compound $39 \mathrm{a}(10.0 \mathrm{~g}, 65.7 \mathrm{mmol})$ in pyridine $(120 \mathrm{~mL})$ was added potassium tert-butoxide $(7.00 \mathrm{~g}, 62.5 \mathrm{mmol})$ at room temperature with stirring. To this was added a mixture of methyl 2-bromo-4-fluorobenzoate ($7.60 \mathrm{~g}, 34.4 \mathrm{mmol}^{\text {i }}$ and copper I' iodide $12.5 \mathrm{~g}, 65.7 \mathrm{mmol}$ in pyridine 120 mL . The resulting mixture was gently refluxed for 4 h . The reaction mixture was cooled to room temperature and stirred for 18 h . The mixture was concentrated in vacuo and the resulting material dissolved in ethyl ether. The solution was washed once with $5 . N$ aqueous hydrochloric acid. The aqueous layer was extracted once with a fresh portion of ether, and the combined organic layers were washed twice with 5 N aqueous ammonium hydroxide. The organic layer was washed once with saturated sodium chloride solution, dried (sodium sulfate, filtered, and concentrated in vacuo. Silica gel chromatography of the resulting residue provided $1.45 \mathrm{~g}\left(15 \%_{i}\right)$ of product as a light. tan solid: $m p 92 \cdots 94^{\circ} \mathrm{C}$. Anal. $\mathrm{C}_{1} ; \mathrm{H}_{1} \div \mathrm{O}_{4} \mathrm{~F} ; \mathrm{C}, \mathrm{H}$.

2-(2-Butyl-3-hydroxyphenoxy)benzoic Acid Methyl Ester (41e). Compound 39b 90.4 mmol was reacted with methyl 2 -iodobenzoate 180 mmol using method S to provide $3.02 \mathrm{~g} 11 \%$ of product as an orange oil. Anal. 1C: $\mathrm{H}_{3}, \mathrm{O}: \mathrm{H}$: C: calcd, 71.98 ; found, 70.82 .

2-[3-Hydroxy-2-[1-(2-methylpropyl)]phenoxy]benzoic Acid Methyl Ester (41f). Compound 39 c 187.3 mmol was reacted with methyl 2 -iodobenzoate 187.3 mmol using method R to provide $3.11 \mathrm{~g}(12 \%$) of product as a light yellow oil. Anal. ${ }^{1} \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}, \mathrm{C}, \mathrm{H}$.
2-(2-Benzyl-3-hydroxyphenoxy)benzoic Acid Methyl Ester ($\mathbf{4 1 \mathrm { g }}$). Compound $39 \mathrm{~d}(87.3 \mathrm{mmol})$ was reacted with methyl 2 -iodobenzoate 87.3 mmol using method R to provide $900 \mathrm{mg}(7 \%)$ of product as a white crystalline material: mp 79-81 ${ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.

3-(2-Cyanophenoxy)-2-propylphenol (41h). Compound 39a (49.3 mmol was reacted with 2 -bromobenzonitrile using method R to provide 1.79 g (14% of product as a white crystalline material: mp $103-107^{\circ} \mathrm{C}$. Anal. ${ }^{(} \mathrm{C}_{1 n} \mathrm{H}_{15} \mathrm{NO}_{2}$) H , N ; C; caled, 75.87; found, 75.09.
2-[2-Propyl-3-[3-[5-(benzyloxy)-2-ethyl-4-phenylphenoxy]propoxy]phenoxylbenzoic Acid Methyl Ester (42a). Compound 41 a (1.57 mmol) was reacted with compound 21 a using method O to provide crude product, which was not purified but immediately converted to compound 43a.

2-[2-Propyl-3-[3-[5-(benzyloxy)-2-ethyl-4-(4-fluorophenyl)phenoxylpropoxylphenoxylbenzoic Acid Methyl Ester (42b). Compound 41a 150.2 mmol) was reacted with compound 22a 150.2 mmol i using method L to provide crude product as a yellow oil. Silica gel chromatography provided $25.4 \mathrm{~g}(78 \mathrm{~F})$ of pure product as a pale golden oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 7.9 \mathrm{~d} . J=7.8 \mathrm{~Hz} .1 \mathrm{H}, 7.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52 \mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) .7 .25-7.43(\mathrm{~m} .6 \mathrm{H}) .7 .03-7.38(\mathrm{~m}$. $5 \mathrm{H}, 6.84(\mathrm{~d}, J=8.3 \mathrm{~Hz} .1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63 \mathrm{is}$. $1 \mathrm{H}, 6.47 \mathrm{cl}, J=8.1 \mathrm{~Hz} .1 \mathrm{H}, 5.03 \mathrm{~s}, 2 \mathrm{H}, 4.24(\mathrm{t}, J=5.7 \mathrm{~Hz}$, $2 \mathrm{H}, 4.21 \mathrm{t} . J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, 3.86 \mathrm{~s}, 3 \mathrm{H}), 2.69 \mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}, 2.64 \mathrm{t}, . j=7.7 \mathrm{~Hz}, 2 \mathrm{H}, 2.34$ quintet. $. J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.6() i hextet, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, 1.22 \mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94 \mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}): \mathrm{MS}-\mathrm{FD}) \mathrm{m} / \mathrm{e} 648 \mathrm{f}^{\left(\mathrm{p} ; ~ \mathrm{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}, 2960,\right.\right.}$ 1;40. 1604, 1497, 1461, 1112. Anal. i $\mathrm{C}_{31} \mathrm{H}_{4}, \mathrm{O}_{51} \mathrm{~F}, \mathrm{C} . \mathrm{H}$
2-[2-Propyl-3-[3-[5-benzyl-2-ethyl-4-(4-fluorophenyl)phenoxylpropoxy]phenoxylphenylacetic Acid Methyl Ester (42c). Cmpound 41 b (2.51 nmol) was reacted with compound 22a 12.51 mmol using method L to provide crude procluct. Purification via silica gel chromatography provided 750 mg 45's of pure product as a colorless oil. Anal. , $\mathrm{C}, \mathrm{H}_{4} \mathrm{O}, \mathrm{F}, \mathrm{C}, \mathrm{H}$.

2-Fluoro-6-[2-propyl-3-13-[5-(benzyloxy)-2-ethyl-4-phenylphenoxylpropoxy]phenoxy]benzoic Acid Methyl Ester (42d). Compound $41 \mathrm{c} \cdot 2.17 \mathrm{mmol}$ was reacted with compound 21a 2.17 mmol 11 sing method O to provide the expected product, which was not purified but immediately converted th compround 43d.

2-Fluoro-6-[2-propyl-3-[3-(5-[benzyloxy)-4-bromo-2-ethylphenoxy]propoxy]phenoxy]benzoic Acid Methyl Ester (42e). Compound 41c $4.80 \mathrm{mmol}!$ was reacted with compound 20a 4.80 mm ul using method O to provide a light brown oil. Silica gel chromatography provided $2.05 \mathrm{~g} .66 \%$ of pure product as a colmeses oil: ${ }^{1} \mathrm{H}$ NMR i CDCl_{3} ! 7.49 d. $. J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}, 7.2(), 75(\mathrm{~m}, 5 \mathrm{H}, 7.14 \mathrm{t} . \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 6.82(\mathrm{t}$. $y=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 6.73 \mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 6.60 \mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H} .6 .53 \mathrm{~s}, 1 \mathrm{H}, 6.52 \mathrm{id}, d=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 5.13 \mathrm{is}, 2 \mathrm{H}, 4.20 \mathrm{l} \mathrm{t}$. $J=6.0 \mathrm{~Hz} .2 \mathrm{H}, 4.13 \mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 3.921 \mathrm{~s}, 3 \mathrm{H}, 2.58 \mathrm{~m}$. $4 \mathrm{H}, 2.30$ quintet. $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 1.51$ hextet, $J=7.6 \mathrm{~Hz}$. $2 \mathrm{H}, 1.16 \mathrm{t}, J=-.9 \mathrm{~Hz} .3 \mathrm{H}, 0.90 \mathrm{t} . J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$.

4-Fluoro-6-[2-propyl-3-[3-[5-(benzyloxy)-2-ethyl-4-(4fluorophenyl)phenoxylpropoxy]phenoxy]benzoic Acid Methyl Ester (42f). Compound 41d $1 . \overline{\text { ij m mol}}$) was alkylated with compound 21b:1.75 mmol! using method O to provide crude product as an oil. Purification via silica gel chromatography provided 640 mg ' 55 F , of product as a white crystalline solid: mp iT is ${ }^{\circ} \mathrm{C}$. Anal. $\mathrm{C}_{,}, \mathrm{H}_{4}, \mathrm{O}_{6} \mathrm{~F}_{2}, \mathrm{C}, \mathrm{H}$.

2-[2-Propyl-3-[4-[5-(benzyloxy)-2-ethyl-4-(4-fluorophenyl)phenoxy]butoxy]phenoxylbenzoic Acid Methyl Ester (42 g). Compound 41 a (4.84 mmol was reacted with compound 21c 4.84 mmol! using method O to provide crude product as an rii. Purification via silica gel chromatography provided 2.40 an of product as a colorless oil. Anal $\mathrm{CO}_{2} \mathrm{H}_{4:} \mathrm{O}_{5} \mathrm{~F}$, C. H .

2-[2-Propyl-3-[5-[5-(benzyloxy)-2-ethyl-4-(4-fluorophenyl)phenoxy]pentoxylphenoxy]benzoic Acid Methyl Ester (42 h). Compound 41a 6.99 mmol , was reacted with compound 21d 6.99 mmol using method O to provide crude product as an ,il. Purification via silica gel chromatography provided 3.90 og (830) ff product as a colorless wil. Anal. , $\mathrm{C}_{12} \mathrm{H}_{:} ; \mathrm{O}, \mathrm{F}, \mathrm{C}, \mathrm{H}$.

2-[2-Butyl-3-[3-[5-(benzyloxy)-2-ethyl-4-(4-fluorophenyl)phenoxy]propoxylphenoxy]benzoic Acid Methyl Ester (42i). Compound 41 e 1.76 mmol! was reacted with compound 21b al.if mmol, using method O to provide crude product as an oil. Purification via silica gel chromatography provided 700 mg i 60% of product as a yellow ail. Anal. $\mathrm{C}_{62} \mathrm{H}_{43} \mathrm{O}_{6} \mathrm{~F}: \mathrm{C}, \mathrm{H}$.

2-[2-[1-(2-Methylpropyl]]-3-[3-[5-(benzyloxy)-2-ethyl-4-(4-fluorophenyl)phenoxylpropoxy]phenoxy]benzoic Acid Methyl Ester (42j). Compound 41 f (2.51 mmol) was reacted with compurd 21b 2.51 mmol , using method O to provide crude product as an oil. Purification via silica gel chromatography rether hexane provided 620 mg i 35% of product as an off-white solivi: $n_{1} \varepsilon_{2} \& 4^{\circ} \mathrm{C}$. Anal. $\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{OF}, \mathrm{C}, \mathrm{H}$.

2-[2-Benzyl-3-[3-[5-(benzyloxy)-2-ethyl-4-(4-fluorophenyl)phenoxy]propoxylphenoxy]benzoic Acid Methyl Ester (42 k). Compound $41 \mathrm{~g}(2.51 \mathrm{mmol})$ was reacted with compound 21b (2.51 mmol) using method O to provide crude product as an oil. Purification via silica gel chromatography provided $680 \mathrm{mg}(40 \%)$ of pure product as a glass. Anal. $\left(\mathrm{C}_{45} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}$.

5-Ethyl-4-[3-[2-propyl-3-(2-cyanophenoxy)phenoxy]pro-poxy][1,1'biphenyl]-2-ol (42l). Compound 41h (6.56 mmol) was reacted with compound 21a (6.56 mmol) using method O to provide crude product as an oil. The crude product was dissolved in hexane/ethyl acetate and passed through a short silica gel column. This material was not purified further but directly converted to compound 431.

2-[2-Propyl-3-[3-(2-ethyl-5-hydroxy-4-phenylphenoxy)propoxy]phenoxy]benzoic Acid Sodium Salt Hemihydrate (43a). Compound 42a was debenzylated using method F and hydrolyzed using method K to provide crude product. The residue was dissolved in a minimum of 1 N sodium hydroxide solution and purified on CHP-20 resin to provide 200 mg (21%) of product as a fluffy white solid. Anal. ($\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{O}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$) C, H.
2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxylpropoxylphenoxy]benzoic Acid Sodium Salt (43b). Compound 42b (50.9 mmol) was debenzylated using method F and hydrolyzed using method K to provide crude product. The crude acid was dissolved in a minimum of 1 N sodium hydroxide solution and purified on CHP- 20 resin to provide $21.2 \mathrm{~g}(74 \%)$ of product as a white amorphous solid: ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $10.50(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 7.51(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.67$ (dd, $J=8.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 2.47(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{t}, J=5.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.45$ (hextet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $0.81 \mathrm{it}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}-\mathrm{FAB} m / e 568(38, \mathrm{p}-1)$, 567 (100, p), 544 (86), 527 (77), 295 (65), $253(45)$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3407 (b), 2962, 1603, 1502, 1446, 1395, 1239, 1112. Anal. ${ }^{(} \mathrm{C}_{33} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{FNa}$) C, H, F.
2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxylpropoxy]phenoxy]phenylacetic Acid (43c), Compound 42c $(1.10 \mathrm{mmol})$ was debenzylated using method F and hydrolyzed using method K to provide crude product. Purification via silica gel chromatography provided 320 mg (60%) of product as a glass. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}$.

2-Fluoro-6-[2-propyl-3-[3-(2-ethyl-5-hydroxy-4-phenylphenoxy) propoxylphenoxy]benzoic Acid Disodium Salt (43d). Compound 42d was debenzylated using method F and hydrolyzed using method K to provide crude product. The residue was dissolved in a minimum of 1 N sodium hydroxide solution and purified on CHP-20 resin to provide $468 \mathrm{mg}(37 \%)$ of product as a fluffy white solid. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{FNa}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{F}$.

2-Fluoro-6-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]benzoic Acid Sodium Salt Hydrate (43e). Compound 42e (2.72 mmol) was reacted with (4-fluorophenyl)boronic acid (8.16 mmol) using method D. The resulting crude product was debenzylated using method F and hydrolyzed using method K . The residue was dissolved in a minimum of 1 N sodium hydroxide solution and purified on CHP- 20 resin to provide $403 \mathrm{mg}(25 \%$) of product as a fluffy white solid. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{~F}_{2} \mathrm{Na} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}$, H.

4-Fluoro-6-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5hydroxyphenoxylpropoxy]phenoxy]benzoic Acid (43f). Compound $\mathbf{4 2 f}(1.02 \mathrm{mmol})$ was debenzylated using method F and hydrolyzed using method K to provide $354 \mathrm{mg}(72 \%)$ of product as a white solid: $\mathrm{mp} 62-64{ }^{\circ} \mathrm{C}$. Anal. ($\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{~F}_{2}$) C, H.
2-[2-Propyl-3-[4-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]butoxylphenoxy]benzoic Acid Sesquihydrate (43 g). Compound $42 \mathrm{~g}(3.32 \mathrm{mmol})$ was debenzylated using method F and hydrolyzed using method K to provide 1.00 g 185%) of product as a white solid: $\mathrm{mp} 65-68{ }^{\circ} \mathrm{C}$. Anal. ${ }^{(} \mathrm{C}_{34} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{~F} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$) C. H .

2-[2-Propyl-3-[5-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxylpentoxylphenoxylbenzoic Acid (43h). Compound $\mathbf{4 2 h}(5.32 \mathrm{mmol}$) was debenzylated using method F and hydrolyzed using method K to provide $2.64 \mathrm{~g}(91 \%)$ of product as a white crystalline solid. Anal. $\left(\mathrm{C}_{35} \mathrm{H}_{3} ; \mathrm{O}_{6} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}$.
2-[2-Butyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxylpropoxylphenoxy]benzoic Acid Hydrate (43i). Compound 42i (1.04 mmol) was debenzylated using method F and hydrolyzed using method K to provide $114 \mathrm{mg}(30 \%)$ of product as an off-white solid: $\mathrm{mp} 62-64{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{~F} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$.

2-[2-[1-(2-Methylpropyl)]-3-[3-[2-ethyl-4-(4-fluorophe-nyl)-5-hydroxyphenoxylpropoxylphenoxy]benzoic Acid (43j). Compound 42j (0.906 mmol) was debenzylated using method F and hydrolyzed using method K to provide 250 mg (57%) of product as an off-white solid: $\mathrm{mp} 48-49^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}$.
2-[2-Benzyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy] propoxy]phenoxy]benzoic Acid (43k). Compound $\mathbf{4 2 k}$ (0.947 mmol) was debenzylated using method F and hydrolyzed using method K to provide crude product. Purification via silica gel chromatography provided 450 mg (80%) of product as a glass. Anal. $\left(\mathrm{C}_{3} ; \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}$.

5-Ethyl-4-[3-[2-propyl-3-[2-(2H-tetrazol-5-yl)phenoxy]phenoxy]propoxy][1, 1^{\prime}-biphenyl]-2-ol Disodium Salt Sesquihydrate (431), Compound 421 (6.56 mmol) was dissolved in 2-methoxyethanol (50 mL). To this solution were added lithium azide ($1.38 \mathrm{~g}, 24.2 \mathrm{mmol}$) and triethylammonium bromide ($1.30 \mathrm{~g}, 7.14 \mathrm{mmol}$). The resulting mixture was refluxed for 48 h , cooled to room temperature, and passed down a short silica gel column. The column was washed with excess ethyl acetate, and the combined washings were concentrated in vacuo. The resulting material was debenzylated using method F. The crude tetrazole was dissolved in a minimum of 1 N sodium hydroxide solution and purified on CHP-20 resin to provide $320 \mathrm{mg}(8 \%)$ of product as a fluffy white solid: ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $7.81(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21 \mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}$. $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}$. $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}$), $4.10(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=6.5 \mathrm{H}$, $2 \mathrm{H}), 2.48(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 1.45$ (hextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.08 ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), $0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; MS-FAB m / e 595 (35, p - 1), $574(39), 573(100), 551(99)$; IR (KBr. $\left.\mathrm{cm}^{-1}\right)$ 3418 (b), 2962, 1577, 1458, 1243, 1229, 1147, 1117. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
3-Methoxy-2-propylphenol (44), To a suspension of 97% sodium hydride ($1.21 \mathrm{~g}, 50.0 \mathrm{mmol})$ in dry DMF (40 mL) at room temperature was carefully added a solution of ethanethiol ($2.65 \mathrm{~g}, 40.5 \mathrm{mmol}$) dissolved in a minimum of DMF. After stirring for 5 min , compound $38 \mathbf{a}(2.51 \mathrm{~g}, 13.9 \mathrm{mmol})$ was added and the resulting mixture stirred for 48 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with 10% aqueous hydrochloric acid (70 mL). The mixture was diluted with ethyl acetate and washed three times with water. The combined aqueous layers were extracted once with ether. The combined organic layers were dried (sodium sulfate), filtered, and concentrated in vacuo to provide $2.20 \mathrm{~g}(90 \%$) of product as an oil.

2-(3-Methoxy-2-propylphenoxy)benzonitrile (45). A mixture of compound $44(1.00 \mathrm{~g}, 6.02 \mathrm{mmol})$, 2 -fluorobenzonitrile ($0.728 \mathrm{~g}, 6.02 \mathrm{mmol}$), 37% potassium fluoride-alumina $(1.00 \mathrm{~g})$, and 18 -crown $-6(0.160 \mathrm{~g}, 0.606 \mathrm{mmol})$ in acetonitrile (25 mL) was refluxed for 48 h . The mixture was cooled to room temperature, filtered, and diluted with ethyl acetate. The organic layer was washed once with saturated potassium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo to provide $1.58 \mathrm{~g}(99 \%)$ of pure product as an oil. Anal. $\left(\mathrm{C}_{1}: \mathrm{H}_{12}: \mathrm{NO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
Alternate Syn thesis of 3-(2-Cyanophenoxy)-2-propylphenol (41 h). To a solution of compound $45.8 .0 \mathrm{~g}, 30 \mathrm{mmol}$, in methylene chloride (50 mL) at $-78^{\circ} \mathrm{C}$ was added boron tribromide $(8.5 \mathrm{~mL}, 90 \mathrm{mmol})$ dropwise via syringe. The resulting mixture was allowed to warm to $-15{ }^{\circ} \mathrm{C}$, and the reaction was followed to completion via TLC. The mixture was filtered and concentrated in vacuo at room temperature. The
residue was dissolved in ethyl acetate and washed once with water. The organic phase was dried (sodium sulfate!, filtered, and concentrated in vacuo. Silica chromatography (hexane, ethyl acetate) provided $4.0 \mathrm{~g}(52 \%)$ of product identical to the material described above.

Alternate Synthesis of 2-(3-Hydroxy-2-propylphenoxy)benzoic Acid Methyl Ester (41a). Compound 41h 520 mg , 2.05 mmol) was dissolved in methanol (5 mL) and treated with 5 N aqueous sodium hydroxide solution at reflux for 48 h . The mixture was cooled to room temperature and carefully neutralized with 5 N aqueous hydrochloric acid. Addition of a slight excess of acid resulted in precipitation of a crystalline material which was collected via vacuum filtration. This material was dissolved in methanol (10 mL) and treated with concentrated sulfuric acid (0.20 mL) at reflux for 18 h . The mixture was cooled to room temperature and diluted with ether and water. The organic phase was separated and washed once with saturated sodium bicarbonate solution, dried (sodium sulfate), filtered, and concentrated in vacuo to provide $480 \mathrm{mg}(82 \%)$ of product as a white solid identical tis) the material described above.

2-[3-(Allyloxy)benzoyl]benzoic Acid (47a). To a solution of 3 -(allyloxy)bromobenzene $46,15.0 \mathrm{~g}, 70.5 \mathrm{mmol}$) in tetrahydrofuran (750 mL) at $-70{ }^{\circ} \mathrm{C}$ was added $1.6 \mathrm{M} n$. butyllithium ($44.1 \mathrm{~mL}, 70.5 \mathrm{mmol}$). After stirring for 1 h , a solution of phthalic anhydride ($11.4 \mathrm{~g}, 77.0 \mathrm{mmol})$ in tetrahydrofuran 100 mL , previously cooled to $-70^{\circ} \mathrm{C}$) was added over 1 h . The mixture was allowed to warm to room temperature and stirred for 3 h . The mixture was diluted with saturated ammonium chloride solution and extracted with ether. The organic layer was washed three times with 1 N sodium hydroxide solution, and the combined aqueous layers were back-extracted with a fresh portion of ether. The aqueous layer was adjusted to $\mathrm{pH} \sim 3$ with aqueous hydrochloric acid and extracted three times with fresh portions of ether. The combined organic layers were washed once with water and once with saturated sodium chloride solution, dried 'sodium sulfate), filtered, and concentrated in vacuo to reveal an offwhite solid. Recrystallization from etherihexane provided 10.3 g (52%; of product as a white crystalline solid: $\mathrm{mp} 109^{\circ} \mathrm{C}$ Anal. ($\mathrm{C}_{1 ;} ; \mathrm{H}_{14} \mathrm{O}_{4}$) C, H.

Method T. 2-[3-(Allyloxy)benzoyl]benzoic Acid Methyl Ester (47b). A solution of compound $47 \mathbf{a}(9.00 \mathrm{~g}, 31.9 \mathrm{mmol})$ in methanol (100 mL) was saturated v ith hydrogen chloride gas. The resulting solution was stirred at room temperature for 18 h . The reaction mixture was concentrated in vacuo and diluted with ether. The resulting solution was washed once with saturated sodium bicarbonate solution, water, and saturated sodium chloride solution. The organic layer was dried (sodium sulfate), filtered, and concentrated in vacuo. The resulting pale yellow oil solidified upon standing to provide $9.45 \mathrm{~g}(100 \%)$ of product as a white solid: $\mathrm{mp} 50-52^{\circ} \mathrm{C}$. Anal. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}, \mathrm{C}, \mathrm{H}$.

Method U. 2-[3-Hydroxy-4-[3-(1-propenyl)]benzoyl]benzoic Acid Methyl Ester (48) and 2-[3-Hydroxy-2-[3-(1-propenyl)]benzoyl]benzoic Acid Methyl Ester (49). Compound 47b $(6.70 \mathrm{~g})$ was heated neat at $175^{\circ} \mathrm{C}$ for 30 h The product mixture was cooled to room temperature and purified via silica gel chromatography (95:5 methylene chloride* ethyl acetate) to provide $1.44 \mathrm{~g}(21 \%$) of 48 and 3.62 g (54% of 49 as white solids.

48: mp 139-140 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left.\mathrm{CDCl}_{3}\right) 8.08$ (dd. $J=7.9 .3 .1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55 \mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, 7.40 \mathrm{~d}$, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}), 6.00(\mathrm{~m}, 1 \mathrm{H}), 5.62$ ibs, $1 \mathrm{H}, \mathrm{OH}, 5.15 \mathrm{im}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}, 3.47 \mathrm{id} . J=5 \mathrm{~Hz}$. $2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$

49: mp 107-109 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 7.91$ (dd. $J=7.8,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.08 \mathrm{~m}, 1 \mathrm{H}, 7.02 \mathrm{~d}, J=8 \mathrm{~Hz}$. $1 \mathrm{H}), 6.80$ (dd, $J=8,2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ (1), 1 H), 5.42 (bs. 1 H . $\mathrm{OH}) .5 .23 \mathrm{(d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.81 \mathrm{~d}$. $J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.68 \mathrm{~s}, 3 \mathrm{H}!$ Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}, \mathrm{C}, \mathrm{H}\right.$

2-[2-[3-(1-Propenyl)]-3-[3-[5-(benzyloxy)-2-ethyl-4-(4fluorophenyl)phenoxy]propoxy]benzoyl]benzoic Acid Methyl Ester (50a). Compound 49 (1.75 mmol) was reacted with compound 22a using method Lt.) provide crude product.

Recrystallization from ether hexane provided 750 mg (65%) of product as a white solid: mp 90-91 ${ }^{\text {² }} \mathrm{C}$. Anal. ($\mathrm{C}_{4} \mathrm{H}_{39} \mathrm{O}_{9} \mathrm{~F}$, C. H .

2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]benzoyl]benzoic Acid (50b). Compound 50 a (0.483 mmol) was hydrogenated using method F and hydrolyzed using method K. Purification of the crude product via silica gel chromatography provided 150 mg (56%) of product as a glass. Anal. $\mathrm{C}_{3 ;} ; \mathrm{H}_{3} ; \mathrm{O}_{6} \mathrm{~F} 1 \mathrm{H}: \mathrm{C}$: calcd. 73.36 : found. 69.71

2-[(3-Hydroxy-2-propylphenyl)methyl]benzoic Acid Methyl Ester (51). Compound $49(10.1 \mathrm{mmol}$, was hydrogenated using method F (with methanol as the solvent) in the presence of concertrated sulfuric acid 1 mL . The mixture was concentrated in vacur) to a volume of approximately 30 mL , filtered. and saturated with hydrogen chloride gas. The resulting mixture was stirred for 18 h and then concentrated in vacuo. The residue was dissolved in ether and washed unce with saturated sidium bicarbonate solution. The aqueous layer was back-extracted with a fresh portion of ether. The combined organic bayers were washed once with saturated sodium chloride salution, dried. filtered, and concentrated in vacuo to provide 2.60 g 90% of product as an orange oil. which was converted directly to compound 52a.

2-[[2-Propyl-3-[3-[5-(benzyloxy)-2-ethyl-4-(4-fluorophenyl phenoxylpropoxylphenyl]methyllbenzoic Acid Methyl Ester (52a). Compound $51(4.68 \mathrm{mmol}$ was reacted with compound 21b using methrid O to provide crude product. Recrystallization from hexane provided $1.72 \mathrm{~g}(38 \%)$ of product as a white solid! $\mathrm{mp} 8: 3-84^{\circ} \mathrm{C}$. Anal. $\left.\mathrm{C}_{43} \mathrm{H}_{13} \mathrm{O} ; \mathrm{F}\right) \mathrm{C}, \mathrm{H}$.

2-[[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxylpropoxy]phenyl]methyl]benzoic Acid (52b). Compound 52a 12.32 mmol was debenzylated using method F and hydrolyzed using method K to provide a crude product. Recrystallization from ether hexane provided 860 mg (68\%
 C. H .

2-[3-(Allyloxy)thiophenoxy]bromobenzene (53a). Гo a solution of 3-ail:loxy bromobenzene $46,8.20 \mathrm{~g}, 38 . \bar{i} \mathrm{mmol}$: in tetrahydrofuran 1600 mL at $-74^{\circ} \mathrm{C}$ was added 1.6 M n-butyllitinium ' $24.2 \mathrm{mLL}, 38.7 \mathrm{mmol}$. After stirring for 30 min this solution was cannulated into a solution of bis 2 -bromophenyl disulfide ($16.0 \mathrm{~g}, 42.5 \mathrm{mmol}$) in tetrahydrofuran (160 mL) at $-74^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to rom temperature. then diluted with saturated ammonium chloride solution. and filtered. The aqueous layer was extraced three times with ether. and the combined organic layers were washed once with water and once with saturated sodium chloride solution. clried 'sodinm sulfate), filtered, and concentrated in racuo to provide a yellow oil. Purification via silica gel chromatography provided $9.40 \mathrm{~g} \cdot 767$, of product as a light yellow oil. Anal. $C_{i} ; \mathrm{H}_{3}, \mathrm{OBrS}, \mathrm{C} . \mathrm{H}$

2-(3-Allyloxythiophenoxy)benzoic Acid Methyl Ester (53b). To a solution of compound 53 a 9.00 g .28 .0 mmol , in tetrahydrofuran 175 ml : at is C was added 1.6 M n-butyllithium ' $19.2 \mathrm{~mL}, 30.8 \mathrm{mmol}$! dropwise. After stirring for 15 min , the solution was saturated with carbon dioxide gas, resulting in a thick gel. Tetrahydrofuran (50 mL , was added and the resulting mixture allowed to war'm to room temperature. The mixture was diluted with saturated ammonium chloride solution. The aqueous layer was extracted once with ether, and the combined organic layers were concentrated in vacuo. The resilue was dissol- ed in a fresh portion of ether and extracted with $1 \times$ iqueons sodium hydroxide. The aqueous layer was washed once with a fresh portion of ether and acidified with aqueous hydrochloric acid. The resulting aqueous layer wats extracted with a fresh portion of ether. This last organic layer was washed once with saturated sodium chloride solution, dried isodium sulfate). filtered. and concentrated in vacho. The crude acid was converted to the methyl ester using method Tt to provide crude product. Purification via silica gel chromatography provided $4.80 \mathrm{~g} 168 \%$ of product as a faint yellow oil. Anal. $\mathrm{C} \cdot \mathrm{H}_{16} \mathrm{O} \mathrm{S}, \mathrm{C}, \mathrm{H}$.

2-[3-Hydroxy-4-[3-(1-propenyl)]thiophenoxy]benzoic Acid Methyl Ester (54) and 2-[3-Hydroxy-2-[3-(1-propenyl))thiophenoxy (benzoic Acid Methyl Ester (55). Com-
pound 53 b (15.0 mmol) was rearranged using method U to provide crude product. Purification via silica gel chromatography (methylene chloride) provided $1.46 \mathrm{~g}(27 \%)$ of $\mathbf{5 4}$ and $2.22 \mathrm{~g}(41 \%)$ of 55 as white solids. 54: mp $96-97^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{1} \div \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}\right) \mathrm{C}, \mathrm{H} .55: \mathrm{mp} 72-74{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}\right) \mathrm{C}$, H.

2-[2-[3-(1-Propenyl)]-3-[3-[5-(benzyloxy)-2-ethyl-4-(4fluorophenyl) phenoxy]propoxy] thiophenoxy]benzoic Acid Methyl Ester (56a). Compound 55 (6.66 mmol) was reacted with compound $21 b$ using method O to provide crude product. Purification via silica gel chromatography (hexane/ diethyl ether) provided $2.90 \mathrm{~g}(66 \%)$ of pure product as a white solid: mp $76-77^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{O}_{5} \mathrm{FS}\right) \mathrm{C}, \mathrm{H}$.

2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]thiophenoxy]benzoic Acid Methyl Ester (56b). Compound $\mathbf{5 6 a}(4.07 \mathrm{mmol}$) was hydrogenated using method F to provide an oil $(\sim 2 \mathrm{~g})$. A solution of this material (1.39 g) in methylene chloride (25 mL) at $-78^{\circ} \mathrm{C}$ was treated with 1 M boron tribromide ($3.61 \mathrm{~mL}, 3.61 \mathrm{mmol}$) and allowed to stir for 1 h . The reaction mixture was diluted with water and extracted with methylene chloride. The organic layer was washed once with water, dried (sodium sulfate), filtered, and concentrated in vacuo to provide a yellow oil. Purification via silica gel chromatography provided 770 mg 147%) of product as a white solid. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{FS}\right) \mathrm{C}, \mathrm{H}$.

2-[2-(1-Propyl)-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxylpropoxy]thiophenoxy]benzoic Acid (56c), Compound 56b (1.22 mmol) was hydrolyzed using method K to provide $689 \mathrm{mg}(100 \%)$ of product as a white solid: $\mathrm{mp} 153-$ $155^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{FS}\right) \mathrm{C}, \mathrm{H}$.

2-[[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenyllsulfinyl]benzoic Acid (56d), To a solution of compound $\mathbf{5 6 c}(450 \mathrm{mg}, 0.803 \mathrm{mmol})$ in methylene chloride (10 mL) at $-78^{\circ} \mathrm{C}$ was added a solution of $85 \% \mathrm{~m}$-chloroperoxybenzoic acid (138 mg) in methylene chloride 12 mL$)$. After 40 min the mixture was concentrated in vacuo. Purification of the residue via silica gel chromatography 95% chloroform $/ 4.5 \%$ methanol $/ 0.5 \%$ acetic acid) provided $380 \mathrm{mg}(80 \%)$ of product as an off-white solid: $\mathrm{mp}>\mathbf{1 0 0}$ ${ }^{\circ} \mathrm{C}$ dec. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{FS}\right) \mathrm{H}$; C: calcd, 68.73 ; found, 67.54 .

2-[[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenyl]sulfonyl]benzoic Acid Hydrate (56e). To a solution of compound $56 \mathbf{5}(150 \mathrm{mg}, 0.260$ mmol) in methylene chloride (3.0 mL) at $0^{\circ} \mathrm{C}$ was added a solution of $85 \% \mathrm{~m}$-chloroperoxybenzoic acid (53 mg) in methylene chloride (1 mL). After 1 h the mixture was warmed to $4^{\circ} \mathrm{C}$ and stirred for 18 h . The mixture was concentrated in vacuo and purified via silica gel chromatography (90% chloroform 9.5% methanol $/ 0.5 \%$ acetic acid) to provide $90 \mathrm{mg}(58 \%)$ of product as a white solid: $\mathrm{mp} 80-90^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{O}\right.$;$\left.\mathrm{FS} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$.

Ethyl 3-(2-Hydroxy-6-methoxyphenyl)propionate (58), 3-Methoxyphenol $57,9.1 \mathrm{mmol}$) was reacted with triethyl orthoacrylate using method M and hydrolyzed using method N to provide crude product. Silica gel chromatography provided $540 \mathrm{mg}(31 \%)$ of product as a crystalline solid: mp 77$79{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.

3-[2-[3-[5-(Benzyloxy)-2-ethyl-4-(4-fluorophenyl)phe-noxy]propoxy]-6-methoxyphenyl]propanoic Acid Ethyl Ester ($61 \mathbf{a}$), Compound 58 (2.9 mmol) was reacted with compound 21b using method O to provide crude product. Purification via silica gel chromatography (hexane/diethyl ether) provided 750 mg (44%) of pure product as a white solid: mp $76-78^{\circ} \mathrm{C}$. Anal. ($\left.\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{O}_{6} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}$.

3-[2-[3-[5-(Benzyloxy)-2-ethyl-4-(4-fluorophenyl)phe-noxylpropoxy]-6-methoxyphenyl]propanoic Acid (61b), Compound 61a (1.18 mmol) was hydrolyzed using method K to provide $485 \mathrm{mg}(74 \%)$ of product as an amorphous solid. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}$.

3-[2-[3-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]-propoxy]-6-methoxyphenyl]propanoic Acid (61c). Compound $61 \mathrm{~b}!0.81 \mathrm{mmol}$) was hydrogenated using method F to provide 295 mg (78%) of the desired product as a solid which was recrystallized from ethanol/diethyl ether: mp 142-144 ${ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{2} \div \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~F}\right) \mathrm{C}$: calcd, 69.22 ; found, $66.08 ; \mathrm{H}$: calcd, 6.24; found, 5.74 .

3-[2-[3-[5-(Benzyloxy)-2-ethyl-4-(4-fluorophenyl)phenoxy]propoxylphenyl]propanoic Acid Ethyl Ester (62a). A solution of compound $\mathbf{5 9}(1.1 \mathrm{~g}, 6.1 \mathrm{mmol})$ in methyl sulfoxide $(75 \mathrm{~mL})$ and tetrahydrofuran $(20 \mathrm{~mL})$ was treated with 60% sodium hydride in mineral oil (6.5 mmol) at room temperature for 15 min . Compound $21 \mathrm{~b}(3.4 \mathrm{~g}, 7.0 \mathrm{mmol})$ was added and the resulting solution stirred for 1.5 h . The mixure was diluted with water and extracted with ethyl acetate. The organic layer was washed once with water and once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo to provide crude product. Purification via silica gel chromatography (hexane/diethyl ether provided 1.8 g (52%) of pure product as a colorless oil. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{~F}\right) \mathrm{C}$, H.

3-[2-[3-[5-(Benzyloxy)-2-ethyl-4-(4-fluorophenyl)phenoxy]propoxy]phenyl]propanoic Acid (62b). Compound 62a (2.03 mmol) was hydrolyzed using method K to provide $750 \mathrm{mg}(70 \%)$ of product as a crystalline solid: $\mathrm{mp} 78-79^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}$.
$3-[2-[3-[2-E t h y l-4-(4-f l u o r o p h e n y l)-5-h y d r o x y p h e n o x y]-~$ propoxy]phenyl]propanoic Acid (62e). Compound 62b $(5.7 \mathrm{mmol})$ was hydrogenated using method F to provide 1.9 g (75%) of the desired product as a solid which was recrystallized from toluene/hexane: mp $77-78^{\circ} \mathrm{C}$. Anal. ($\left.\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}$.

3-[2-[3-[5-(Benzyloxy)-2-ethyl-4-(4-fluorophenyl)phenoxy]propoxy]phenyl]propionitrile (63a). Compound 60 (5.7 mmol) was reacted with compound 21 b using method A to provide crude product. Purification via silica gel chromatography (hexane/diethyl ether) provided $1.7 \mathrm{~g}(56 \%)$ of pure product as an oil. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{NO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[2-[3-[5-(Benzyloxy)-2-ethyl-4-(4-fluorophenyl)phe-noxy]propoxy]phenyl]-1-(1H-tetrazol-5-yl)ethane (63b). A solution of compound $\mathbf{6 3 a}(1.7 \mathrm{~g}, 3.5 \mathrm{mmol}$ in tri- n-butyltin azide (15 mL) was heated at $95^{\circ} \mathrm{C}$ for 23 h . cooled to room temperature, and diluted with a mixture of acetic acid $(30 \mathrm{~mL}$, THF (15 mL), and acetonitrile (75 mL). The mixture was stirred for 3 h , washed several times with hexane, and concentrated in vacuo. Purification of the resulting residue via silica gel chromatography (diethyl ether hexane) provided $1.8 \mathrm{~g}(98 \%)$ of pure product as a solid: mp $153-155^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[2-[3-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]-propoxylphenyl]-1-(1H-tetrazol-5-yl)ethane (63c). Compound 63 b (3.3 mmol) was hydrogenated using method F to provide $280 \mathrm{mg}(19 \%)$ of the desired product as an amorphous solid. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{2}-\mathrm{N}_{4} \mathrm{O}_{3} \mathrm{~F}\right) \mathrm{H}, \mathrm{N}$; C: calcd, 67.52; found, 66.69.

3-[(4-Cyanobutyl)oxy]phenol (65). Resorcinol (5.5 g, 50 mmol) was alkylated with 5 -bromovaleronitrile (2.5 mmol) using method L to provide crude product. Purification via silica gel chromatography (methanolidichloromethane) and recrystalization from hexane provided $3.1 \mathrm{~g}(64 \%)$ of pure product: mp $58-60^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}^{\circ} \mathrm{O}_{2}, \mathrm{C}, \mathrm{H}, \mathrm{N}\right.$.
$3-[[4-(E t h o x y c a r b o n y l) b u t y l]$ oxy $]$ phenol (66a). Resorcinol ($5.5 \mathrm{~g}, 50 \mathrm{mmol}$) was alkylated with ethyl 5 -bromovalerate (2.5 mmol) using method L to provide crude product. Purification via silica gel chromatography (diethyl ether: hexane) and recrystallization from hexane provided $3.4 \mathrm{~g}(58 \%$, of pure product: $\operatorname{mp} 37-39^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}\right) \mathrm{C} . \mathrm{H}$.

3-[[4-[(Dimethylamino)carbonyl]butyl]oxy]phenol (66b). Compound $66 \mathbf{a}$ ($3.7 \mathrm{~g}, 17 \mathrm{mmol}$) was dissolved in 40°, aqueous diethylamine and stirred at room temperature for 24 h . The mixture was extracted with dichloromethane and the organic layer washed once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Purification via silica gel chromatography (methanol/diethyl ether) and recrystallization from ether provided $1.6 \mathrm{~g} 144 \%$, of product: mp $111-113^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{1(1} \mathrm{NO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[6-[(4-Cyanobutyl)oxy]-2-hydroxyphenyl]propanoic Acid Ethyl Ester (67). Compound 65 (11 mmol) was reacted with triethyl orthoacrylate using method M and hydrolyzed using method N to provide crude product. Silica gel chromatography (diethyl ether/hexane) provided 500 mg (17%) of product as an oil. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
$3-[6-[[4-(E t h o x y c a r b o n y l) b u t y l] o x y]-2-h y d r o x y p h e n y l]-$ propanoic Acid Ethyl Ester (68). Compound 66a (26 mmol) was reacted with triethyl orthoacrylate using method M and
hydrolyzed using method N to provide crude product. Silica gel chromatography (diethyl ether/hexane) provided 2.2 g $\left(25 \%\right.$ of product as an oil. Anal. ($\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6}$) H; C: calcd, 78.40; found, 64.38 .

3-[6-[[4-[(Dimethylamino)carbonyl]butyl]oxy]-2-hydroxyphenyl]propanoic Acid Ethyl Ester (69). Compound 66b (15.6 mmol) was reacted with triethyl orthoacrylate using method M and hydrolyzed using method N to provide crude product. Silica gel chromatography (methanol/dichloromethane) provided 970 mg (21%) of product as an oil. Anal. ($\mathrm{C}_{1 \times} \mathrm{H}_{2}$:$\mathrm{NO}_{3}, \mathrm{C}, \mathrm{H}, \mathrm{N}$

3-[2-[3-[5-(Benzyloxy)-2-ethyl-4-(4-fluorophenyl)phe-noxy]propoxy]-6-[(4-cyanobutyl)oxy]phenyl]propanoic Acid Ethyl Ester (70a). Compound $67(1.72 \mathrm{mmol})$ was reacted with compound 21 b using method A to provide crude product. Purification via silica gel chromatography (hexane: diethyl ether) provided 500 mg (52%; of pure product as an (iit. Anal. $\left\{\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO}_{5} \mathrm{~F}\right) \mathrm{C}, \mathrm{H}$.

3-[2-[3-[5-(Benzyloxy)-2-ethyl-4-(4-fluorophenyl)phe-noxy]propoxy]-6-[[4-(1H-tetrazol-5-yl)butyl]oxy]phenyl]propanoic Acid Ethyl Ester (70b). Compound 70a 10 mmoli was reacted with sodium azide using method H to provide crude product. Purification via silica gel chromatography (methanolidichloromethane) provided $420 \mathrm{mg}(71 \%)$ of pure product as a crystalline solid which was recrystallized from hexane: mp 90-91 ${ }^{\circ} \mathrm{C}$. Anal. ($\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~F}$) C, H, N.

3-[2-[3-[5-(Benzyloxy)-2-ethyl-4-(4-fluorophenyl)phe-noxy]propoxy]-6-[[4-(1H-tetrazol-5-yl)butyl]oxy]phenyl]propanoic Acid (70c), Compound 70b 10.60 mmol) was hydrolyzed using method K to provide $400 \mathrm{mg}\left(100 \%_{\text {I }}\right.$) of product as a crystalline solid which was recrystallized from hexane'diethyl ether: mp 131-133 ${ }^{\circ} \mathrm{C}$. Anal. $\left\langle\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{~N}_{;} \mathrm{O}_{i ;} \mathrm{F}\right)$ C. H, N.

3-[2-[3-[5-(Benzyloxy)-2-ethyl-4-(4-fluorophenyl)phe-noxy]propoxy]-6-[[4-(ethoxycarbonyl)butyl]oxy]phenyl]propanoic Acid Ethyl Ester (71a). Compound 68 (2.4 mmol! was reacted with compound $21 \mathbf{b}$ using method O to provide crude product. Purification via silica gel chromatography (hexane/diethyl ether) provided 790 mg (56%) of pure product as an oil. Anal. $\left(\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{O}, \mathrm{F}, \mathrm{C}, \mathrm{H}\right.$.

3-[2-[3-[5-(Benzyloxy)-2-ethyl-4-(4-fluorophenyl)phe-noxy]propoxy]-6-[(4-carboxybutyl)oxy]phenyl]propanoic Acid (71b). Compound 71a (1.64 mmol) was hydrolyzed using method K to provide $585 \mathrm{mg}(58 \mathrm{C})$) of product as a crystalline solid which was recrystallized from hexane/diethyl ether: $\mathrm{mp} 117-118^{\circ} \mathrm{C}$. Anal. ${ }^{\circ} \mathrm{C}_{3 \times} \mathrm{H}_{4}$; $\mathrm{O} 8 \mathrm{~F}!\mathrm{H}$; C: calcd, 70.79 ; found, 69.90 .

3-[2-[3-[5-(Benzyloxy)-2-ethyl-4-(4-fluorophenyl)phe-noxy]propoxy]-6-[[4-[(dimethylamino)carbonyl]butyl]oxylphenyllpropanoic Acid Ethyl Ester (72a). Compound 69 (1.78 mmol) was reacted with compound 21 b using method O to provide crude product. Purification via silica gel chromatography hexane'diethyl ether) followed by recrystallization from hexane provided $495 \mathrm{mg}(40 \%$) of pure product: mp $58-60{ }^{\circ} \mathrm{C}$. Anal. ($\left.\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{NO}-\mathrm{F}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[2-[3-[5-(Benzyloxy)-2-ethyl-4-(4-fluorophenyl)phe-noxy]propoxy]-6-[[4-[(dimethylamino)carbonyl]butyl]oxylphenyl]propanoic Acid (72b). Compound 72a (0.707 mmol, was hydrolyzed using method K to provide 495 mg 156% of product as a glass. Anal. $\left(\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{NO}, \mathrm{F}, \mathrm{C}, \mathrm{H}, \mathrm{N}\right.$.
3-[2-[3-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]-propoxy]-6-[[4-(1H-tetrazol-5-yl)butyl]oxy]phenyl]propanoic Acid (73), Compound 70c $(0.18 \mathrm{mmol})$ was hydrogenated using method F to provide 45 mg (44% of the desired product as an amorphous solid. Anal. $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~F}$, C: caicd, 64.35 ; found, 58.65 : H : calcd, 6.10 ; found, 5.69 ; N : calcd, 9.69 ; found. 8.50.

3-[?-[3-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxypl enoxy]-propoxy]-6-[(4-carboxybutyl)oxy]phenyl]propanoic Acid (74). Compound $71 \mathrm{~b}(0.25 \mathrm{mmol})$ was hydrogenated using method F to provide $140 \mathrm{mg}(92 \%)$ of the desired product as crystalline solid: $\mathrm{mp} 95-98^{\circ} \mathrm{C}$. Anal. $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{O}_{8} \mathrm{~F}$).

3-[2-[3-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy $1-6-[[4-[($ dimethylamino $)$ carbonyl $]$ butyl $]$ oxy $]$ phenyllpropanoic Acid (75). Compound 72b 0.595 mmol ,
was hydrogenated using method F to provide $145 \mathrm{mg} 42 \%$ of the desired product as a glass. Anal. ${ }^{\prime} \mathrm{C}_{13} \mathrm{H}_{4} \cdot \mathrm{NO}-\mathrm{F}$ ',

Acknowledgment. We thank the members of the Physical Chemistry Department for providing analytical data.

References

1. Preliminary reports of this work were presented at the following conferences: (a) Sawyer, J. S.; Bach, N. J.: Baker, S. R.; Baldwin. R. F.: Borromeo. P. S.; Boyd. R. J.: Cockerham, S. L.: Fleisch. I. H.: Froelich. L. L.; Jackson, W. T.; Marder, P.; Palkowitz, J. A.: Roman, C. R.: Saussy, D. L.. Jr.; Schmittling. E. A.: Silbaugh. S. A.: Sofia. M. J.; Spaethe. S. M.: Stengel. P. W. Biphenylsubstituted Diaryl Ether Leukotriene B_{4} Receptor Antagonists: the Discovery of LY293111 2-[2-Propyl-3-3-2-ethyl-4-4-fliorophenyl $1-5$-hydroxyphenoxylpropoxylphenoxy lbenzuic Acid. Crtokines and Lipid Mediators in Regulation of Cell Function. Copper Mountain. CO, August 8-13, 1993, (t): Sifia, .ll. J.: Floreancig, P.; Nelson, K.; Bach, N. J.; Baker, S. R.; Jack*on. W. T.; Fleisch. J. H.; Silbaugh. S. A.; Marder. P.: Sausey. D. L. Jr.: Froelich, L. L.: Stengel, P. W.: Cockerham. S. L..: Romin;. C. R.; Sawyer, J. S. ortho-Biphenylphenols: in Novel Class of Poteni and Orally Active Leukotriene B_{4} Receptor Antagonists. American Chemical Society National Meeting. Chicago, 1L. August ?"? 27. 1993. ©c: Sofia, M. J.: Floreancig, P.: Bach. N. J.: Baker. S. R.; Velson, K.; Sawyer. J. S.; Cockerham, S. L.: Fleisch. J. H.: Jackson. W, T.: Marder, P.: Roman. C. R.; Saussy. D. L... JI:: Silbangh. S. A.: Stengel, P. W. The Discovery of LY293111. a Novel. Potent and Orally Active Leukotriene B_{4} Receptor Antagonist of the Biphenylphenol Class. 3rd Intelnational Conference of Eicrsanoids and Other Bioactive Lipids in Cancer. lnflammation, and Radiation Injury, Washing:on. D.C. Ociober 12-16. 1993. id Jackson. W. T.: Bery. R. J.: Froelich. L. L.: Schultz, R. Al.; Saussy, D. L.. Jr.; Roman, C, R.; Fleisch, I. H.: Sofia, M. J.: Sawyer J. S Inhibition of Leukotriene B_{4} L.TB. \cdot Induced Activation of Human Neutrophils, ${ }^{3} \mathrm{H}_{-1} \mathrm{LTB}_{4} \mid$ Binding to Guinea Pig l.ung Membranes, and LTB_{4}-Stimulated Guinc, Pig Lung Parenchyma Contraction by LY293111. a Now i.TB Receptor Antagonist, Inflammation 93. Vienna, Answia, October' 10-15. 199)3. !e Silbaugh. S. A.: Stengel. P. W.: Cockerham. S L.; Froelich. L. l.: Bendele. A. M.: Sofia, M. J.: Sawyer. A. S Jackson, W. T'. Pulmonary Actions of LY2931!1. a Leukotriene 'LTiB ${ }_{4}$ Receptor Antagonist. Inflammation '93. V'ienna. Austi; a. October 10~15. 1993 . if Sawyer, J. S.: Borromeo, P. S.: Firtelint L. L.: Saussy. I). L., Jr.; Marder, P.; Jackson, W. T.: Spaethe. S. N. Structural Analogues of LY'293111, a Potent. Orally Accive Diaryl Ether Carboxylic Acid Leukotriene B_{*} Receptor Antagunist, 24 th National Fiedicinal Chemistry Symposiurr. Salt lako City, LT, June 21-25, 1994
2) (a, Ford-Hatchinson. A. W.: Bray. M.: Doig, M.: Shiples, M.: Smith. M. J. Leukotriene B, a Potent Chemokinetic and Aggregation Substance Released from Polymorphoniclear l.eukicytes. Vatur, 1980. 286. 264-265. ibi Palmblad, J. Malmsten. C.; Lden. A.: Radmark, O.: Engstedt. L.: Samuelsson. B. l.TB; is a Poten Sterenspecific Stimulator of Neutrophil Chemotaxis and Adherence. Blood 1981. 58, 658-661 © Goldman. D. W.: Gifford. L. A.: Marotti. T: Koo, C. H.: Goetzl, E. J. Molecuis? and Cellular Properties of Fuman Polymorphonuclear Leuknevse Receptors for Leukotriene B:, Fed, Proc: 1987. 56, 200-203. id, Schultz. R. M.; Marder, P.: Spaethe, S. M.: Herron. D. K.: Soña. M. J. Effects of Two Leukotriene B_{4} LTB: Receptor Antaginist: (LY255283 and SC-41930. on LTB_{4}-induced Human Ventiophis Adhesion and Superoxide Production. Prostaglendinn. Lérki. trienes Essent. Fatty Arids 1991, 46, 267-.271. ie: McMillan. R. M.: Foserer, S. J. Leukotriene $\mathrm{B}_{\text {}}$ and Inflammatory Dionase. Agents Actions 1988. 24. 114-119. Ifi Jackson, W. T.: Boyd. R. J.: Froelich. L. L.: Mallett. B. E.: Gapinski. D. M. Specific Inhibition of Leukotriene B_{4}-1nduced Neutrophil Activation by 1.Y223982. J. Pharmacol. Exp. Ther. 1992, 263. 1009-1f14.
(3) Goldman. D. W.: Goetzl. E. J. Specific Binding of Lellkolitene B, to Receptors on Hurnan Polymorphonuclear Lenkncytes. I. Immi(nol. 1982, 129.1600-1604.
14. Charlson. S.: Evans. J. F : Zamboni. R. J.: Leblanc, Y.: Fitzsimmins. B, I: leveille, C.: Dupuis. P.: Ford-Hutchinsars. A. W Leukotriene B_{i}, Leukotriene B_{4}. Leukotriene $B_{:}$: Binding io Leukotriene B_{4} Receptors on Rat and Human leakncyte Nembra;nee. Prostaglandins 1986, 32, 503 -509.
(5) Pavan, 1). Gr.: Missirian-Bastion. A.: Goetzl. E. J. Human T-lymphocyte Subset Specificity of the Regulatory Effeets of Leukotriene B: Proc. Natl. Acrel. Sri. L.S.A. 1984. 3. 3 . 3 , 3505.
(6) Kragballe. K.; Voorhees, J. J. Arachidonic Acid in Proriasis Pathogenic Role and Pharmacological Regulatiom. A(:a $D: \cdots$, Venercol. Stockn: 1985. Suppl. 120, 12-17
17) Stenson. I. W. Role of Eicosanoids as Mediators of Inflammatory

(8) Griffiths, R. J.; Pettipher, E. R.; Koch, K.; Farrell, C. A.; Breslow, R.; Conklyn, M. J.; Smith, M. A.; Hackman, B. C.; Wimberly, D. J.; Milici, A. J.; Scampoli, D. Ň.; Cheng, J. B.; Pillar, J. S.: Pazoles, C. J.; Doherty, N. S.; Melvin, L. S.; Reiter, L. A.; Biggars, M. S.: Falkner. F. C.; Mitchell, D. Y.; Liston, T. E.; Showell, H. J. Leukotriene B_{4} Plays a Critical Role in the Progression of Collagen-Induced Arthritis. Proc. Natl. Acad. Sci. Li.S.A. 1995, 92, 517-521.
19. (a) Wardlaw, A. J.: Hay, H.: Cromwell, O.: Collins, J. V.; Kay, A. B. Leukotrienes, LTC_{4} and LTB_{4}, in Bronchoalveolar Lavage in Bronchial Asthma and Other Respiratory Diseases. J. Allergy Clin. Immunol. 1989, 84, 19-26. rbi Lam, S.; Chen, H.; LeRiche, J. C.; Chan-Yeung, M.: Salari, H. Release of Leukotrienes in Patients with Bronchial Asthma. J. Allergy Clin. Immunol. 1988 81.711-717.
(10) al Antonelli, M.: Bufi, M.; De BLasi, R. A.; Crimi, G.; Conti, G.; Mattia, C.; Vivino, G.; Lenti, L.; Lombardi, D.; Dotta, A.; et al. Detection of Leukotrienes $\mathrm{B}_{4}, \mathrm{C}_{4}$ and of Their Isomers in Arterial, Mixed Venous Blood and Bronchoalveolar Lavage Fluid from ARDS Patients. Intensive Care Med 1989, 15, 296-301, ib Rivkind. A. I.; Siegel. J. M.; Guadalupi, P.; Littleton, M. Sequential Patterns of Eicosanoid, Platelets, and Neutrophil Interactions in the Evolution of the Fulminant Post-traumatic Adult Respiratory Distress Syndrome. Ann Surg. 1989, 210. 3ñ5-373. (c) Davis. J. M; Meyer, J. D; Barie, P. S.; Yurt, R. W:; Duhaney. R.: Dineen, P.; Shires, G. T. Elevated Production of Neutrophil Leukotriene B_{4} Precedes Pulmonary Failure in Critically Ill Surgical Patients. Surg. Gynecol. Obstet. 1990, 170, 495-500.
(11) For leading references to other recently reported LTB_{4} receptor antagonists, see: (ai Sawyer, J. S. Leukotıene B_{4} Receptor Antagonists: Recent Clinical Developments. Exp. Opin. Invast. Drugs, in press. ibi Cohen. N.; Yagaloff, K. A. Recent Progress in the Development of Leukotriene B_{4} Antagonists. Curr. Opin. Imest. Drugs 1994, 3. i3-22 (c) Cohen, N.; Bizzarro. F. T.: May W. P.; Toth. K.: Lee. F. K.; Heslin, P. H.; Holland, G. W.; Kwoh. S. C.; i ranco, L. S.: Simko, B. A.; Yagaloff, K. A. Benzenepropanoic Acids Containing Chromanone or Naphthalenone Moieties are Potent and Orally Active Leukotriene B_{4} Antagonists BioMed. Chem. Lett. 1994. 4, 2883-2888. (d) Penning, T. D. Djuric. S. W.; Miyashiro, J. M.; Yu, S.; Snyder, J. P.; Spangler, D.: Anglin. C. P.: Fretland, D. J.; Kachur, J. F.; Keith, R. H.; Tsai. B. S.; Villani-Price, D.: Walsh, R. E.; Widomski, D. L. Second-Gone:ation Leukotriene B_{4} Receptor Antagonists Related to SC-41930: Heterocyclic Replacement of the Methyl Ketone Pharmacophose. J. Med. Chem. 1995, 38, 858-868.
(12) Herron, D. K.; Goodson, T.; Bollinger, N. G.; Swanson-Bean, D.; Wright, l. G.: Staten, G. S.; Thompson, A. R.; Froelich, L. I... Jackson. W. T. ieukotriene $\mathrm{B}_{4}\left(\mathrm{LTB}_{4}\right)$ Receptor Antagonists: the LY255283 Series of Hydroxyacetophenones. J. Med. Chem. 1992. 35, 1818-1828
13) Gapinski, D. M.: Mallett, B. E.; Froelich, L. L.; Jackson, W. T. Benzophenone Dicarboxylic Acid Antagonists of Leukotriene B_{4}. 2. Structure-Activity Relationships of the Lipophilic Side Chain. J. ifed. Chem. 1990. 33, 2808-2813.
(14) Jackson. W. T.i Froelich. L. L.; Gapinski, D. M.; Mallett, B. E.; Sawyer. J. S. Design. Synthesis, and Pharmacological Evaluation of Potent Xanthone Dicarboxylic Acid Leukotriene B_{4} Receptor Antagonists. J. Mt , Chem. 1993.36, 1726-1734.
(15) Djuric, S. W.: Collins, P. W.; Jones, P. H.; Shone, R. L.; Tsai, B. S.: Fretland, D. J.: Butchko, G. M.; Villani-Price, D.; Keith, R. H.: Zemaitis, J. M.: Metcalf, L.; Bal:or, R. F. 7-[3-14-Acetyl-3-methoxy-2-propylphenoxy;propoxyl-3,4-dihydro-8-propyl-2H-1-benzopyran-2-carboxylic acid--an Orally Active, Selective Leukotriene B_{4} Receptor Antagonist. J. Med. Chem. 1989, 32, 1145$114^{\circ}$.
(16) Djuric, S. W.: Docter, S. H.; Yu, S. S., Spangler, D.; Tsai, B.-S.; Anglin. C. P.; Gaginella, T. S.: Kachur, J. F.; Keith, R. H.; Maziasz. T. J.; Villani-Price, D.; Rao, T. S.; Walsh, R. E.; Widomski, D. L.: Fretland. D. J. Synthesis and Pharmacological Ectuvity of SC-53228, a leeukotriene B_{4} Receptor Antago: ist with High Intrinsic Potency and Selectivity. BioMed. Chem. Lett. 1994, 4. 811-816. See also: Penning, T. D.; Djuric, S. W.: Miyashiro, J. M.: Yu, S.: Snyder, J. P.; Spangler, D.: Anglin, C. P.; Fretland, D. J.; Kachur, J. F.; Keith, R. H.; Tsai. B. S.; VillaniPrice. D.; Walsh, R. E.: Widomski, D. L, Second-Generation Leukotriene B_{4} Receptor Antagonists Related to SC-41930: Heterocyclic Replacement of the Methyl Ketone Pharmacophore. J. Med. Chem. 1995, 38, 858-868.
117. Huang. F.-C.; Chan, W.-K.; Warus, J. D.; Morrissette, M. M.; Moriarty, K. J.: Chang. M. N.: Travis. J. J.; Mitchell, L. S.; Nuss, G. W.: Sutherland. C. A. 4-[2-[Methyll2-phenethyliaminol-2-oxoethyll-8-r phenylme $10 x y$-2-naphthalenecarboxylic Acid: a High Affinity. Competitive. Orally Active Leukotriene B_{4} Receptor Antagonist. J. Med. Chem. 1992, 35, 4253-4255.
118 Koch, K.; Melvin, L. S., Jr.; Reiter, L. A.; Biggers, M. S.; Showell, H. J.: Grifiths. R. J.: Pettipher, E. R.; Chei.g, J. B.; Milici, A. J.: Breslow, R.: Conklyn, M. J.: Smith, M. A.: Hackman, B. C.: Drherty. N. S.: Salter, E.; Farrell. C. A.; Schulte, G. - -1 .
(3S,4R)-[3-(4-Phenylbenzyl)-4-hydroxychroman-7-yl]cyclopentane Carboxylic Acid, a Highly Potent, Selective Lenkotriene B_{4} Antagonist with Oral Activity in the Murine Collagen-Induced Arthritis Model. J. Med. Chem. 19е4, 37, 3197-3199.
(19) Fujimoto, R. A.; Main, A. J.; Barsky, L. I.; Morrissey, M.; Cadilla, R.; Boehm, C.; Zhang, Y.; Suh, S.; Boxer, J. B.; Powers, D. B.; Doti, R. A.; Healy, C. T.; Seligmann, B. E.; Uziel-Fusi, S.; Jarvis, M. F.: Sills, M. A.; Jackson, R. H.; Lipson, K. E.; Chin, M. H.; Pellas, T. C.; Pastor, G.; Fryer, L. K.; Raychaudhuri, A.; Kotyuk, B. L. Aryl Amidines: A New Class of Potent Orally Active Leukotriene B_{4} Antagonists, 7 th International Meeting of the Inflammatory Research Association, White Haven, PA, Sept 25^{-} 29. 1994.
(20) Djuric. S. W.; Shone. R. L.; Yu, S. S. T. U.S. Patent No. 4,889,871, 989.
121, West, C. T.; Donnelly, S. J.; Kooistra, D. A.; Doyle, M. P. Silane Reductions in Acidic Media. Il. Reductions of Aryl Aldehydes and Ketones by Trialkylsilanes in Trifluoroacetic Acid. A Selective Method for Converting the Carbonyl Group to Methylene. J. Org. Chem. 1973, 38, 2675-2681.
122) Miryaura, N.; Yanagi, T.i Suzuki, A. The Paladium-Catalyzed Cross Coupling Reaction of Phenylboronic Acid with Haloarenes in the Presence of Bases. Synth. Commun. 1981, 11, 513-518.
(23! Negishi, E.-I.; King, A. O.; Okıkado, N. Selective Carbon-Carbon Bond Eormation via Transition Metal Catalysis. 3. A Highly Selective Synthesis of Unsymmetrical Biaryls and Diaryl. methanes by the Nickel- or Palladium-Catalyzed Reactions of Aryl- and Benzylzinc Derivatives with Aryl Halides. J. Org. Chem. 1977, 42, 1821-1823.
123) Sawyer, J. S.: Baldwin, R. F.; Sofia, M. J.; Floreancig, P.: Marder, P.: Soussy, D. L., Jr.; Froelich, L. L.; Silbaugh, S. A.; Stengel, P. W.; Cockerham. S. L.; Jackson, W. T. Biphenylyl-Substituted Xanthones: Highly Potent Leukotriene B_{4} Receptor Antagonists. J. Mod. Chem. 1993, 36, 3982-3984.
(25) Panetta. J. A.; Rapoport, H. New Synthesis of Coumarins. J. Org. Chem. 1982, 47, 946-950.
(26) Sawyer, J. S.; Baldwin, R. F.; Saussy, D. L., Jr.; Froelich, L. L.; Jackson, W. T. Diaryl EtheriCarboxylic Acid Derivatives of LY255283: Specific Receptor Anta onists of Leukotriene B_{4}. BioMed. Chem. Lett. 1993, 3, 1980-1990.
(27; Sawyer, J. S.: Baldwin, R. F.: Rinkema, L. E.; Roman, C. R.; Fleiscl. J. H. Optimization of the Quinoline and Substituted Benzyl Moieties of a Series of Phenyltetrazole Leukotriene D_{4} Receptor Antagonists. J. Med. Chem. 1992, 35, 1200-1209.
128: Schmittling. E. A.; Sawyer. J. S. Synthesis of Diaryl Ethers, Diaryl Thioethers, and Diaryi Amines Mediated by Potassium Fluoride-Alumina and 18 -Crown-6. J. Org. Chem. 1993. 58, 3229-3230.
(29) Assay conditions are described in ref 42. For each compound, an inhibition response study was done in triplicate on cells from a single individual and an IC_{516}, valne calculated from the results. An estimate of the variation of this value among individuals car: be made from results of similar studies done with other compounds in which the inhibitory effect was measured on cells from five individuals. The average standard deviation istandard errol for $n=1$, for six LTB_{4} antagonists studied in this manner was $15=4 \%$ of the mean $I C_{60}$.
124) Silbaugh, S. A.; Stengel, P. W.: Cockerham, S. L.; Roman, C. R.; Saussy, D. L., Jl.; Spaethe, S. M.; Goodson, T.; Herron, D. K.: Fleisch, J. H. Pulmonary Actions of LY255283, a Leukotriene B4 Receptor Antagonist. Eur. J. Pharmacol. 1992, 223, 5i-64.
(31) Presented as the concentration of preincubated antagonist 11° min at room temperature: required to inhbit 50% of the upregulated CD11b:CD18 expression of human neutrophils activated with 1 n.M LTB_{4} for 30 min at $37^{*} \mathrm{C}$. CD11b; CD18 expression was determined by flow cytometry and and, where presented with SEM values, I_{50} values are the mean of at least four determinations. See: (a) Marder, P.: Schultz, R. M.; Spaethe, S. M.; Sofia, M. J.; Herron, D. K. Flow Cytometric Evaluation of the Effects of Leukotriene B_{4} Receptor Antagonists 1 LY 255283 and SC-41930 on Calcium Mnbilization and Integrin Expression of Activated Human Neutrophils. Prostaglandins, Leik kotrienes Essent. Fatty Acids 1991. 46, 265-270. Ibi Marder. P.: Sawyer, J. S.; Froelich, L. L.; Mann, L. L.; Spaethe, S. M. Bolckade of Human Neutrophil Activation by LY293111, a Novel Leukotriene B_{4} Receptor Antagonist. Biochem. Pharmacol. 1995. 49. 1683-1690.
125) Hamel. R.: Ford-Hutchinson, A. W. Bronchuconstrictor Effects of Leukotriene B_{4} in the Guinea Pig In Vivo. Prostaglandins 1983, $25,405-412$.
(33) (a) Silbaugh, S. A.: Stengel, P. W.; Dillard, R. D.; Bemis, K. G. Pulmonary Gas Trapping in the Guinea Pig and lts Application in Pharmacological Testing. J. Pharm. Methods 1987. 18. 295° 303. (b) Silbaugh, S. A.; Stengel, P. W.; Cockerham, S. L.: Mallett, B. E.; Gapinski. D. M. Mechanism of LTB Airway Obstruction in the Guinea Pig. Physiologist 1988, 31 , A91. 'ci Stengel, P. W.; Silbaugh, S. A. Mechanisms of Gas Loss from Normal and Hyperinflated Excised Guinea Pig Lungs. Respir. Physiol. 1994. 63, 129-138.
(34) Sofia. M. J.: Jackson, W. T.: Saussy, D. L.. Jr.; Silbaugh, S. A.: Froelich, L. L.; Cockerham, S. L.; Stengel, P. W. Ortho-Alkoxyphenol Leukotriene B_{i} Receptor Antagonists. BioMed. Chem. Lett. 1992, 2, 1669-1674
(35) (a) Sofia, M. J.; Nelson, K.; Froelich, L. L.; Goodson. T., Jr.; Herron, D. K.; Jackson, W. T.; Marder, P.; Saussy, D. L., Jr.: Spaethe, S. M.; Silbaugh. S. A.; Cockerham. S. L.; Roman. C.: Stengel, P. W.: Wikel, J.; Fleisch, J. H. 1,2,4,5-Substituted Phenols as LTB_{4} Receptor Antagonists: the Role of the orthophenol Substituent. 205th National Meeting of the American Chemical Society, March 28-April 2, 1993, Denver, CO. Abst. MEDI 135. ibl Sofia, M. J.; Nelson, K.; Herron, D. K.; Gordson. T.; Froelich, L. L.: Spaethe, S. M.; Marder, P.; Roman, C. R.; Fleisch, J. H. 2-Alkyl-4-ethyl-5-6-methyl-6-12H-tetrazol-o-yl) heptyloxy'- phenol Leukotriene B_{4} Receptor Antagonists. BioMerl. Chen, Lett. 1995, 5, 1995-2000.
(36) Harper, R. W.; Jackson, W. T.; Froelich, L. L.: Boyd. R. J.: Aldridge, T. E.; Herron, D. K. Leukotriene $\mathrm{B}_{4}\left(\mathrm{LTB}_{4}\right.$ Receptor Antagonists: A Series of (Hydroxyphenyl)pyrazoles. J. Med. Chem. 1994, 37, 2411-2420.
(37) Sofia, M. J.; Floreancig, P.; Bach, N. J.; Baker, S. R.; Cockerham, S. L.: Fleisch, J. H.; Froelich, L. L.; Jackson, W. T.: Marder, P.; Roman, C. R.; Saussy, D. L., Jr.; Spaethe, S. M.: Stengel, P. W.: Silbaugh, S. A. o-Phenylphenols: Potent and Orally Active Leukotriene B_{4} Receptor Antagonists. J. Med. Chem. 1993, 36 . 39:8-3981.
(38) Goldman, D. W.; Goetzl, E. J. Heterogeneity of Human Polymorphonuclear Leukocyte Receptors for Leukotriene B_{4} : Identification of a Subset of High Affinity Receptors that Transduce the Chemotactic Response. J. Exp. Med. 1984, 159. 1027-1041.
139. Sofia. M. J.; Floreancig, P.: Jackson, W. T.; Marder. P.: Saussy, D. L., Jr.: Silbaugh, S. A.; Cockerham, S. L.; Froelich, 1.. L.:; Roman, C. R.; Stengel, P. W.; Fleisch, J. H. Acid Unit Modificedtions of 1.2.4.5-Substituted Hydroxyacetophenones and the Effect on \ln Vitro and In Vivi) LTB ${ }_{4}$ Receptor Antaginism. Bis,Med. Chem. Lett. 1993, 3, 1147-1152.
(40) Sofia. M. J.; Saussy, D. L., Jr.; Jackson. W. T.; Marder, P.: Silbaugh. S. A.; Froelich. L. L.: Cockerham, S. l.,: Stengel, P. W. Ortho-Alkoxyphenol Leukotriene B_{4} Receptor Antagonists: Effect of a Chroman Carboxylic Acid. BioMed. Chem. Lett. 1992. ? $1675-1680$.
(41) Sawyer. J. S.; Baldwin, R. F.: Froelich, L. L.; Saussy, D. L... Jי.; Jackson, W. T. Synthesis and Pharmacologic Activity of Hy-droxyacetophenone-Substituted Benzophenonef:Xanthone leukotriene B_{4} Receptor Antagonists. BioMed. Chem. Lett. 1993, 3 . 1981-1984.
(42) Gapinski, D. M.: Mallett, B. E.; Froelich. L. L.; Jackson, W. T. Benzophenone Dicarboxylic Acid Antagonists of Leukotriene B_{4}. 1. Structure-Activity Relationships of the Benzophenone Nucleus. J. Med. Chem. 1990, 33, 2798-2807.
143) Sawyer, J. S.: Schmittling, E. A.; Bach. N. J.; Baker, S. R.: Froelich. L. L.; Saussy, D. L... Jr.: Marder, P.: Jackson, W. T. Structural Analogues of LY292728, a Highly Porent Xanthone Dicarboxylic Acid Leukotriene B_{4} Receptor Antagonist: Spatial Positioning of the Secondary Acid Group. BioMed. Chem. Litf.

1994, 4, 2077-2082. See also: Chaney, M. O.; Froelich, L. l..: Gapinski, D. M.; Mallett, B. E.: Jackson, W. T. Characterization of the Spatial Arrangement of the Two Acid-Binding Sites on the Human Neutrophil LTB_{4} Receptor. Receptor 1992, 2. 169. 179.
(44) 'al Konno, M.; Sakuyama, S.; Nakae, T.; Hamanake, N.: Myamoto. T.: Kawasaki. A. Synthesis and Structure-Activity Relationships of a Series of Substituted-Phenylpropionic Acids as a Novel Class of Leukotriene B_{4} Antagonists. Adv. Prostaglandin Thromboxare Leukotriend Res. 1992, 21, 411-414. ib Kishikawa, K.: Tateishi, N.; Maruvama. T.; Seo. R.: Toda. M. Miyamoto. T. OXO-4057, a Novel. Orally Active Leukotriene B Antagonist: Effects on LTB $_{4}$-Induced Neutrophil Functions. Prostaglandins 1992, 44, 261-2;5.
(4.): Baker, S. R.; Boot, J. R.: I.ucas, R.; Wishart, G. Sulukast. Drogs Fiture 1991, 16, 432-436.
(46) Sawyer, J. S.: Saussy, D. L., Jr. Cysteinyl Leukotriene Receptirs. Drug Neus Perspect. 1993, 6, 139-149.
:4i) Spaethe, S. M.; Marder, P.: Froelich, L. L.; Petersen, B. H.; Croghan, T. W.; lucas. R. A.; Tanner, T.; Sawyer, J. S. Pharmacologic Efficacy of LY293111, a Potent Orally Active Leukotriene B_{4} ILTB ${ }_{4}$, Receptor Antagonist in Humans, IRA Satellite Meeting IIUPHAR: Novel Molecular Approaches to Antiinflammatory Therapy, Toronto, Canada, July 22-23, 1994.
448) Boronic acids which were not commercially available were prepared by one of two methods. Method 1. A solution of the appropriate aryl bromide in THF at $-78^{\circ} \mathrm{C}$ under a nitrogen at mosphere was met alated with t-Bulii $i 2$ equiv. This was added to) a solution of triisopropyl borate in THF previously cooled to - - is ${ }^{\circ}$ C. After stirring for 15 min the reaction mixture was warmed to room temperature. stirred for an additional 15 min . diluted with ethyl acetate, and shaken with a portion of 10 , aqueous hydrochloric acid. The organic layer was separated, dried (so)dium sulfate', filtered and concentrated in vacuo. The resulting crude boronic acid was recrystallized from hexaneethyl acetate mixtures. Method 2. The appropriate aryl iodide or bromide was metalated as described above and treated at $-\$ 8$ "C with trimethylsilyl chlaride (1.8 equiv. The reaction mixture was allowed to warm to room temperature. diluted with saturated aquerous ammonium chloride solution, and extracted with ethyl acetate. The organic layer was dried isodium sulfate'. filtered, and concentrated in vacuo. The crude arylsilane wis dissolved in methylene chloride, cooled to $-78^{\circ} \mathrm{C}$, and treated with boron tribromide il equivi. The reaction mixture was warmed to ronmed temperature, stirred for 15 h , cooled to -78 C. and treated with excess methanol. The reaction mixture was warmed to room temperature, stirred for 30 min , diluted with methylene chloride and washed with aqueous 5 N hydrochloric acid. The crude boronic acid was recrystallized from hexanevethyl acctate mixtures. See: Sharp, M. J.: Cheng. W.: Snieckus. V. Synthetic Connections to the Aromatic Directed Metalation Reaction. Functionalized Aryl Boronic Acids by 1 PSO and m-Terphentls. Tctrahderon Lett. 1987. 2\&. $0093-5096$,

.JM950434I

[^0]: * To whom correspondence should be addressed.

 Present address: Glaxo Research Institute, Research Triangle Park, NC 27709.
 *Present address: Transcell Technologies, lnc., 2000 Cornwall Rd., Monmouth. NJ 08852.
 *Abstract published in Advance ACS Abstracts, October 1, 1995

[^1]: (a) $\mathrm{BrCH}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}_{2} \mathrm{Cl}_{1}, \mathrm{~K}_{2} \mathrm{CO}_{3}$. 2-butanone, $\mathrm{DMSO}_{;}$b) $\mathrm{Et}_{3} \mathrm{SiH}$, trifluoroacetic acid, CCl_{4}; (c) NBS, CCl_{4}; d d phenylboronic acid or (4-fluorophenyll boronic acid. EtOH. benzene, aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{Pd}\left(\mathrm{PPh}_{7}\right)_{4}$ cat.; ;e; NaI , 2-butanone.

[^2]: ${ }^{n}$ tet $=1 H$-tetrazol-5-yl. ${ }^{h} \mathrm{ND}=$ not determined.

